
TO RELIVE THE WEB: A FRAMEWORK FOR THE

TRANSFORMATION AND ARCHIVAL REPLAY OF

WEB PAGES

by

John Andrew Berlin
B.S. December 2015, Old Dominion University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May 2018

Approved by:

Michele C. Weigle (Director)

Michael L. Nelson (Member)

Justin F. Brunelle (Member)

ABSTRACT

TO RELIVE THE WEB: A FRAMEWORK FOR THE
TRANSFORMATION AND ARCHIVAL REPLAY OF WEB PAGES

John Andrew Berlin
Old Dominion University, 2018
Director: Dr. Michele C. Weigle

When replaying an archived web page (known as a memento), the fundamental
expectation is that the page should be viewable and function exactly as it did at
archival time. However, this expectation requires web archives to modify the page and
its embedded resources, so that they no longer reference (link to) the original server(s)
they were archived from but back to the archive. Although these modifications
necessarily change the state of the representation, it is understood that without
them the replay of mementos from the archive would not be possible. Unfortunately,
because the replay of mementos and the modifications made to them by web archives
in order to facilitate replay varies between archives, the terminology for describing
replay and the modification made to mementos for facilitating replay does not exist.
In this thesis, we propose terminology for describing the existing styles of replay and
the modifications made on the part of web archives to mementos in order to facilitate
replay. This thesis also, in the process of defining terminology for the modifications
made by client-side rewriting libraries to the JavaScript execution environment of
the browser during replay, proposes a general framework for the auto-generation
of client-side rewriting libraries. Finally, we evaluate the effectiveness of using a
generated client-side rewriting library to augment the existing replay systems of web
archives by crawling mementos replayed from the Internet Archive’s Wayback Machine
with and without the generated client-side rewriter. By using the generated client-side
rewriter we were able to decrease the cumulative number of requests blocked by the
content security policy of the Wayback Machine for 577 mementos by 87.5% and
increased the cumulative number of requests made by 32.8%. Also by using the
generated client-side rewriter, we were able to replay mementos that were previously
not replayable from the Internet Archive.

iii

Copyright, 2018, by John Andrew Berlin, All Rights Reserved.

iv

ACKNOWLEDGEMENTS

First I would like to thank God who ultimately gave me the strength and ability to
complete this thesis.

This thesis would not have been possible without the guidance, support, and
seemingly endless patience of my advisers Dr. Michele C. Weigle and Dr. Michael
Nelson. Without it, I would have been forever lost in a sea of JavaScript with no
chance of coming up for air and have learned so much from their tutelage for which I
am eternally grateful. I would like to thank Dr. Nelson for pushing me to investigate
the replay failure of cnn.com and the forever redirecting mendely.com user page as
these two investigations laid the foundation for this thesis topic. I am also grateful to
Dr. Weigle for giving me the opportunity while I was still an undergraduate to work
on a WSDL project which opened the door for me to join the research group.

I would like to give a huge shout out to Mat Kelly for being the creator of the
web archiving projects I cut my teeth on. If he had not created WAIL, Mink, and
WARCreate, I would not have had a starting point for all things JavaScript. Another
shout out goes to Sawood Alam for being an excellent sounding board for ideas and
always playing devils advocate.

Finally I am extremely grateful to my family, especially my grandparents, for
their encouragement and support throughout the process of completing this thesis.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . xv

Chapter

1. INTRODUCTION . 1
1.1 CONTRIBUTIONS . 11
1.2 THESIS ORGANIZATION . 11

2. BACKGROUND . 13
2.1 HYPER TEXT TRANSPORT PROTOCOL (HTTP) 13
2.2 HYPER TEXT MARKUP LANGUAGE . 17
2.3 JAVASCRIPT (JS) . 20
2.4 BROWSERS AND VIEWING A WEBPAGE . 23
2.5 MEMENTO FRAMEWORK . 26
2.6 ARCHIVING AND REPLAY OF WEB PAGES 28
2.7 URL REWRITING . 32
2.8 SUMMARY . 36

3. RELATED WORK. 37
3.1 ARCHIVING DYNAMIC CONTENT . 37
3.2 HANDLING THE REPLAY OF DYNAMIC CONTENT 38
3.3 SECURITY AND THE ARCHIVE . 39
3.4 SUMMARY . 40

4. STYLES OF REPLAYING ARCHIVED WEB PAGES . 41
4.1 ARCHIVAL LINKAGE MODIFICATIONS . 41
4.2 REPLAY PRESERVING MODIFICATIONS . 47
4.3 SANDBOXED REPLAY . 54
4.4 NON-SANDBOXING REPLAY . 65
4.5 ESSENCE PRESERVATION. 71
4.6 SUMMARY . 85

5. JAVASCRIPT FOR THE PRESERVATION AND REPLAY OF THE MOD-
ERN WEB. 88
5.1 WEB IDL . 89
5.2 WEB IDL JAVASCRIPT MAPPING . 91
5.3 AUTO-GENERATING A CLIENT-SIDE REWRITER 94
5.4 EVALUATION . 148
5.5 WAYBACK MACHINE BANNER VULNERABILITY 174

vi

5.6 SUMMARY . 180

6. CONTRIBUTIONS, FUTURE WORK, AND CONCLUSIONS 184
6.1 CONTRIBUTIONS . 184
6.2 FUTURE WORK . 185
6.3 CONCLUSIONS . 185

REFERENCES. 188

APPENDICES
A. JAVASCRIPT FOR THE PRESERVATION AND REPLAY OF THE

MODERN WEB . 195

VITA. .204

vii

LIST OF TABLES

Table Page

1. RFC 7231 HTTP methods . 15

2. HTTP status code classes . 16

3. HTML elements containing the src and href attributes 42

4. Link Rel Types Requiring A Browser Resource Fetch 43

5. Content Security Policy Directives . 54

6. Terminology for describing the “Wayback” model of replay 85

7. Terminology describing the modifications made to mementos to facilitate
replay using the “Wayback” model . 86

8. Terminology for describing the replay of and modifications made to me-
mentos by the “Non-Wayback” model . 87

9. HTML Element Attributes With Rewrite Modifier From Pywb 96

10. Baseline Interface Discovery Identifiers . 121

11. Special Well-Known Interface and Member Identifiers 121

12. Identified HTML Interfaces . 126

13. Identified Non-Element or Special Case Interfaces . 127

14. Crawler Recorded Metrics Term Definitions . 151

15. Observed Request Increase, Rewrites Client-Side And Requests Blocked
By CSP With and Without Client-Side Rewriting . 152

16. Interface Operation Rewrites . 157

17. General Rewrites . 157

18. Terms describing the modifications made to the JavaScript execution
environment of the browser by client-side rewriting libraries 182

viii

LIST OF FIGURES

Figure Page

1. Replay failure of the home page for CNN.com . 4

3. Replay errors for the home page of CNN as seen by the developer console 5

4. archive.is archival transformation of CNN . 6

5. Replay failures of https://www.mendeley.com/profiles/helen-palmer 9

6. Archive-It rewriting the identifier “Location” in the archived javaScript of
mendeley.com user pages . 10

7. Anatomy of a URI . 14

8. Anatomy of content negotiation . 15

9. HTTP request with redirection . 17

10. The HTML of the famous http://example.com . 19

11. http://example.com rendered by Google Chrome . 20

12. JavaScript making an HTTP request for an image and mutating the DOM
by adding an img tag whose src attribute is a Blob URL 21

13. Ways additional JavaScript can be introduced into the page 21

14. JavaScript adding an HTTP cookie to the page . 22

15. JavaScript changing the location of the browser . 22

16. JavaScript for changing browser history . 23

17. JavaScript for changing the domain of the browser . 23

18. Anatomy of a CORS request . 25

19. Temporal content negotiation with the Internet Archive’s TimeGate to
select the best Memento for the web page http://grindtodeath.com/
at the datetime Wed, 31 Oct 2012 09:52:40 GMT. 26

20. TimeMap for the web page http://grindtodeath.com/ retrieved from
the Internet Archive . 27

https://www.cnn.com/
https://www.mendeley.com/profiles/helen-palmer
http://example.com
http://example.com
http://grindtodeath.com/
http://grindtodeath.com/

ix

21. Wayback Machine’s interface For http://www.nocleansinging.com/ 31

22. WARC file contents containing the HTTP requests and responses for the
preserved web page http://example.com . 32

23. Pre And Post Rewritten Link Tags . 33

24. Pywb CSS regex rewriter . 34

25. URIs in CSS files . 35

26. OpenWayback standard attribute rewrite configuration 35

27. Archival Acid Test tool evaluation results as of December 2014, [45, p. 3
Table 2] . 37

28. Custom HTML element using custom attributes . 44

29. Live web JavaScript usage of URI-Rs . 45

30. Script tag embedding JSON. 46

31. Request made to Flicker API using embedded JSON 46

32. Response body for the GET request to Flicker API 46

33. URIs in CSS files . 47

34. Meta refresh tag . 47

35. Content Security Policy defined in a meta tag . 48

36. The HTML of the page delivering a Content Security Policy via meta
tag with the areas affected by the policy during replay from the Internet
Archive’s Wayback Machine highlighted . 50

37. Meta Tag Delivered Content Security Policy preventing Internet Archive
From Loading Wayback Machine Resources . 51

38. Blocked Wayback and archived embedded resources 52

39. Meta tag delivered content security policy preventing Internet Archive
from controlling save page now . 53

40. Integrity attribute of the script and link tags . 54

41. Example of replay isolation’s sandbox on a page replayed by webrecorder.io.
The sandboxed portion is outlined in red. 56

http://example.com

x

42. Sandboxing Replay frame tree. The green box represents the webrecorder.io
domain and the red box represents the webrc.io domain 58

43. Replay Isolation user view. The green box represents the necessarily archive
controlled portion of replay and the red box represents the replayed page . 59

44. Ways in which JavaScript may detect it is being replayed inside an iframe 60

45. Frame busting JavaScript Github search . 61

46. Location exposing and navigation control JavaScript APIs 62

47. Replay Isolation location override implementation . 63

48. Direct function overriding of JavaScript HTTP request APIs 64

49. Direct element attribute and content rewriting . 65

50. Example of non-sandboxing replay. The replayed page’s contents are
outlined in red. 66

51. Non-Sandboxing replay frame tree . 68

52. Non-Sandboxing replay user view. The green box represents the necessarily
archive control portion of replay and the red box represents the replayed
page . 69

53. http://example.com as it exists on the live web . 70

54. Internet Archive’s injected banners vulnerability to a memento embedded
CSS due to non-sandboxing replay . 70

55. Internet Archive’s injected banners vulnerability (Figure 54), offending
div and memento’s embedded CSS . 71

56. PastPages preserving news sites essence through images 72

57. Example http://cs.odu.edu/∼jberlin/originalThreeGreen.html 74

58. Simple example of Archival Caricaturization preserving exactly how the
page existed. Rendering of HTML shown in Figure 57. 75

59. Transformation of HTML shown in Figure 57 as archived through carica-
turization . 76

60. archive.is caricaturization of nocleansinging.com, the live web version is
on the left, and the memento is on the right . 77

http://example.com
http://cs.odu.edu/~jberlin/originalThreeGreen.html

xi

61. heavyblogisheavy.com vs. archive.is no zoom . 78

62. heavyblogisheavy.com vs. archive.is zoom 50% . 79

63. heavyblogisheavy.com vs. archive.is zoom 90% . 79

64. archive.is addition of display:none to heavyblogisheavy.com 81

65. Page using JavaScript powered custom HTML elements as the primary
markup . 83

66. Page using JavaScript powered custom HTML elements as the primary
markup as replayed from archive.is demonstrating the inability of archive.is
to correctly preserve the page through caricature . 84

67. Web IDL syntax . 90

68. Web IDL extended attributes and typedefs . 90

69. Unforgeable and NoInterfaceObject extended attributes 92

70. Web IDL interface to ECMAScript mapping . 93

71. HTMLAnchorElement.idl . 94

72. CSS style properties that may contain URLs and how URLs may exist in
CSS style definitions found in a style tag . 97

73. CSS in Web IDL . 98

74. Dynamic changes to the textContent attribute of a style tag to load URLs
live web . 99

75. Dynamic changes to the textContent attribute of a style tag to load URLs
archived . 100

76. Well-known property mutating identifiers . 101

77. Well-known document mutating identifiers . 102

78. DOMParser Web IDL Interface . 102

79. bbc.com new story footer images blocked by the Wayback Machine’s
content security policy . 104

80. bbc.com new story footer images blocked by the Wayback Machine’s
content security policy, network tab of browser developer tools 105

xii

81. bbc.com new story footer blocked images img tag CSS classes 105

82. Embedded configuration for lazy loading the additional stories images . . . 106

83. Portion of the response to the request for the additional stories images
“/news/patttern-library-components?. . . ” . 106

84. bbc.com lazy loading code . 107

85. http://www.soufeel.com/ archived vs live web . 109

86. Network tab of the developers console when replaying soufeel.com from
the Wayback Machine displaying the blocked images 110

87. Select HTML elements used by soufeel.com in lazy loading way 1 110

88. soufeel.com lazy loading way 1, code embedded in HTML and formatted
for presentation . 111

89. soufeel.com select HTML elements used by lazy loading way 2. Formatted
for presentation . 112

90. soufeel.com lazy loading way 2 code. Formatted for presentation 112

91. soufeel.com select HTML elements used by lazy loading way 3 113

92. soufeel.com lazy loading way 3 JavaScript code . 114

93. Well-known URL identifiers variations and patterns 115

94. Type matching to discover additional interfaces which expose an attribute
whose typing is an identified interface . 116

95. History interface . 117

96. Browser history manipulation using the History and Location interfaces
before manipulation . 117

97. Browser history manipulation using the History and Location interfaces
after manipulation . 119

98. Browser history manipulation using the History and Location interfaces
live web . 120

99. Object vs Function Object Web IDL . 128

100. Object vs. Function Object JavaScript . 129

http://www.soufeel.com/

xiii

101. HTMLAudioElement named constructor Web IDL . 129

102. HTMLAudioElement named constructor JavaScript 130

103. Interface attribute and operation patch overrides . 130

104. Prototype object patch modification . 131

105. Interface existing instance replace modification . 131

106. Global execution object replace modification . 132

107. Existing instance replace plus patch . 132

108. Existing instance replace plus patch modification . 133

109. Foreign substitution unforgeable Location interface 134

110. Archive-It rewriting the text string “location” in the archived JavaScript
of mendeley.com user pages. Live web version on the right. 134

111. Pywb version 0.33 rewriting the text string “location” found in non-
JavaScript page markup for the documentation of React Router 135

112. Text string “location” in HTML bundled with the JavaScript for the
documentation of React Router . 136

113. Incorrect rewriting of the text string “location” and “top” in React Router’s
documentation. The incorrect rewrites are highlighted in red (Figure 113a)
and the original strings in the documentation are highlighted in green
(Figure 113b) . 138

114. Webrecorder and Pywb global patch override for its rewriting of the text
strings “location” and “top” . 138

115. Archive-It’s mitigation for its rewriting of the text string “location” and
“top” . 139

116. Example extend override . 140

117. Archive Window and Document interface proxies . 141

118. Archive JavaScript proxy setup anonymous block scope 142

119. Archive JavaScript proxy setup function scope . 143

120. Browser compatibility tables for the let declarator and JavaScript Proxy
object . 144

xiv

121. Location checks negated by archive controlled window proxy 145

122. Temporal spread of the composite mementos crawled 149

123. Alexa June 2017 rankings of the composite mementos crawled 150

124. Cumulative number of requests (Figure 124a) and number of requests
per page (Figure 124b) for 577 composite mementos replayed from the
Internet Archive’s Wayback Machine. 154

126. Cumulative number of client-side rewrites (Figure 125a) and number of
client-side rewrites client-side per page (Figure 126a) for 577 composite
mementos replayed from the Internet Archive’s Wayback Machine. 156

127. Cumulative number of blocked requests (Figure 127a) and number of
blocked requests per page (Figure 127b) with and without client-side
rewriting for 577 composite mementos replayed from the Internet Archive’s
Wayback Machine . 160

128. ∆Req and ∆Req′ values for 577 composite mementos replayed from the
Internet Archive’s Wayback Machine . 162

129. Instagram replayed from the Internet Archive . 163

130. Instagram archived location reloading JavaScript . 164

131. Archived page that is to just set a cookie and reload the page 164

132. m.vk.com cookie setting and location replacing JavaScript 165

133. The home page of cnn.com is replayable from the Internet Archives Way-
back Machinie with client-side rewriting . 167

134. The home page of reuters.com increased replay fidelity from the Internet
Archive’s Wayback Machine with client-side rewriting 169

135. Home page of sohu.com increased replay fidelity from the Internet Archive’s
Wayback Machine with client-side rewriting . 172

136. soufeel.com increased replay fidelity from the Internet Archive’s Wayback
Machine with client-side rewriting, . 174

137. Malicious XMLHttpRequest targeting the banner of the Internet Archive’s
Wayback Machine . 175

138. Embedded JavaScript delivering EvilXHR executed before Wayback Ma-
chine’s toolbar.js . 176

xv

139. Timemap retirevied from the Wayback Machine for the page with malicious
XMLHttpRequest . 177

140. Wayback Machine banner code, toolbar.js, affected by EvilXHR 177

141. Evil createElement targeting the display of the memento selection feature
of the Wayback Machine’s banner, . 178

142. Red selection bar for choosing a different memento to view 178

143. Embedded JavaScript delivering evil createElement executed before Way-
back Machine’s toolbar.js . 179

144. Wayback Machine banner code, toolbar.js, affected by evil createElement 180

145. http://wayback.archive-it.org/wb-static/js/ait-client-rewrite.
js . 202

146. Full Response containing the portion of un-rewritten HTML shown in
Figure 83 . 203

http://wayback.archive-it.org/wb-static/js/ait-client-rewrite.js
http://wayback.archive-it.org/wb-static/js/ait-client-rewrite.js

1

CHAPTER 1

INTRODUCTION

“When you have eliminated the JavaScript, whatever remains must be an empty page” 1

“Time keeps on slippin’, slippin’, slippin’ into the future . . . I want to fly like an
eagle, to the sea” is an excerpt taken from the refrain and chorus of Fly Like An

Eagle by the Steve Miller Band. These lyrics from the song speak about how quickly
the present becomes the future, and to understand the passing of time one must lift
himself to a higher plain like the eagle who flies in sky towards the sea. This is much
like web archiving. Web archiving (eagle) preserves the web (sea) over time so that
our future generations can know the past in order to understand the future. But
unlike the traditional sea, the digital ocean that is the web changes at a much faster
rate over time.

A four-year longitudinal study that was conducted from December 1996 to Febru-
ary 2001 of 361 web pages measuring their change in both content and “liveliness”
on a weekly basis [1] found that 34.4% of the original sample set did not exist by
the end of that study, while another study in 2001 [2] estimated that only 20% of
“today’s” web pages will be “alive” after a year. An earlier study in 1997 [3] found
that out of 950,000 AT&T web trace records, 16.5% of the sample set was changed at
each access and the primary modifications were to link and image tags. The issue of
changing and missing web content is such an issue that a group of researchers created
a corpus of web pages containing dead links entitled “Book of the Dead” [4, 5, 6].
This was the motivating factor for the start of web archiving in 1996 when Brewster
Kahle founded the Internet Archive2, a non-profit digital library with the goal of
preserving the entire ethos of the web. The goal was not only to simply preserve the
web’s content, but to relive it through the Wayback Machine(s)3, which allows its
users to replay archived web pages at any given point of time.
1From the noscript tag of a Google web page
2https://archive.org/about/bios.php
3http://web.archive.org/web/20020806031346/http://www.archive.org:
80/wayback/press_kit/press_release.html

https://archive.org/about/bios.php
http://web.archive.org/web/20020806031346/http://www.archive.org:80/wayback/press_kit/press_release.html
http://web.archive.org/web/20020806031346/http://www.archive.org:80/wayback/press_kit/press_release.html

2

But as time has progressed, more and more web users desire to preserve and replay
web content that was not available at the inception of the modern web archiving
infrastructure [7, 8, 9, 10]. Take, for instance, the issue of “unarchivable” web pages
with the disappearance of a popular US news network CNN, and, its main web page
from the primary web archives right before the presidential election of 2017 [11].
Figure 1 shows the archived versions of www.cnn.com replayed from three of the
more widely known archives, archive.is (Figure 1a), WebCitation (Figure 1b), and the
Internet Archive (Figure 1c).

The primary issue is with the changes CNN made to their content delivery network
(CDN) and replaying the page’s JavaScript, which retrieves the page’s resources from
the CDN. The live web page uses an older technique in respect to web development
standards to overcome the restrictions placed on web pages by Same Origin Policies by
setting the domain of the document to a shorter common domain. But when the page
is replayed from the archive, the Same Origin Policy [12] disallows changing the domain
because the origin is now the archives (e.g., web.archive.org), not cnn.com, causing
the information that the page’s JavaScript required to load the page’s resources to
“disappear” due to browsers enforcement of the Same Origin Policy. Though the
archival failure for this page exists across multiple archives, the page also demonstrates
additional archive specific issues; when replayed from WebCitation (Figure 1b), the
page appears to be “properly archived”, albeit without any CSS styling.

3

(a) Replayed from archive.is on 2016-11-29

(b) Replayed from WebCitation on 2016-11-13

http://archive.is/eqL31
http://www.webcitation.org/query?id=1479077460727249&date=%400&fromform=1

4

(c) Replayed from the Internet Archive on 2016-11-01

Fig. 1. Replay failure of the home page for CNN.com

The difference in replay from the Internet Archive (Figure 2a) and WebCitation
(Figure 3a) is that WebCitation changed the Multipurpose Internet Mail Extensions

(MIME) [13, 14] type of the pages style sheets from “text/css” to “text/html” which
in turn caused the browser to not apply the archived Cascading Style Sheets (CSS) to
the page; hence, the appearance of non-failure in preservation. If WebCitation had
sent the correct MIME type there would be little apparent difference from replay on
the Internet Archive (Figure 2a), as both execute the page’s JavaScript and both
incur the Same Origin Policy issue.

http://web.archive.org/web/20161101131540/http://www.cnn.com/
https://www.cnn.com/

5

(a) Errors when the home page of CNN is replayed from the Internet Archive

(a) Errors when the home page of CNN is replayed from WebCitation

Fig. 3. Replay errors for the home page of CNN as seen by the developer console

Conversely, archive.is does not execute the archived page’s JavaScript at replay
time nor does archive.is preserve the page’s JavaScript. Like Webcitation, archive.is
modifies the page but in its entirety by applying a transformation to the original
markup. Figure 4 shows the page, with the “white out” removed, replayed from
archive.is with the elements page of the Chrome developer tools open. The elements

6

page shows us that archive.is has applied a transformation to the page’s original
HTML in order to preserve and replay it using the archive’s closed source replay
engine.

Fig. 4. archive.is archival transformation of CNN

This allows archive.is to remove the original representation’s HTML attributes, in-
line the style sheet definitions that the browser would normally apply to the elements,
and create the foreign representation of the page shown in Figure 4. This style of
modification is primarily made by archival services that do not use the “Wayback”
model of replay. A “Non-Wayback” archival service is one that may not follow the
standard model of web archiving of preserving the original representation and making
it accessible in both original and rewritten formats via an implementation of the
Internet Archive’s Wayback machine (Chapter 4). Ultimately, modifications rely on
the “good intentions” on the part of the archiving entities due to the lack of vocabulary,
guidelines, or preservation framework by which to ensure these modifications are not
completely detrimental to both replay and preservation of the web.

An example of the negative effects of an archive’s direct modifications of page can be

7

found when replaying a seemingly non-complicated web page archived by the Archive-
It service. Figure 5a shows https://www.mendeley.com/profiles/helen-palmer,
which will always redirect [15] when attempting to replay the page from Archive-It
(Figure 5b) and any archive that preserves and execute the page’s JavaScript (Figures
5c and 5d)4.

(a) https://www.mendeley.com/profiles/helen-palmer as seen on the live web

4https://youtu.be/GzfMOEgaB24

https://www.mendeley.com/profiles/helen-palmer
https://www.mendeley.com/profiles/helen-palmer
https://youtu.be/GzfMOEgaB24

8

(b) https://www.mendeley.com/profiles/helen-palmer replayed from Archive-It

(c) https://www.mendeley.com/profiles/helen-palmer replayed from The Internet
Archive

https://www.mendeley.com/profiles/helen-palmer
http://wayback.archive-it.org/8130/20161215231900/https://www.mendeley.com/profiles/helen-palmer
https://www.mendeley.com/profiles/helen-palmer
http://web.archive.org/web/20170126164831/https://www.mendeley.com/profiles/helen-palmer/
http://web.archive.org/web/20170126164831/https://www.mendeley.com/profiles/helen-palmer/

9

(d) https://www.mendeley.com/profiles/helen-palmer replayed fromWebrecorder

Fig. 5. Replay failures of https://www.mendeley.com/profiles/helen-palmer

When inspecting the archived versions of the page’s embedded resources when
replayed by Archive-It and Webrecorder you would discover that the pages’ JavaScript
varies drastically from the original. Both Archive-It and Webrecorder are re-writing
well-known global JavaScript identifiers with their own overrides (Figure 6).

https://www.mendeley.com/profiles/helen-palmer
https://webrecorder.io/jberlin/mendeley/20170212182756/https://www.mendeley.com/profiles/helen-palmer/
https://www.mendeley.com/profiles/helen-palmer

10

1 // archive it version
2 window.__PRELOADED_STATE__ = {
3 "WB_wombat_self_location": {
4 "id": "fcc2fd44-d82e-45ca-8855-35ee6b8bfbe9",
5 "latitude": 63.44,
6 "longitude": 10.4,
7 "name": "Trondheim, Norway",
8 "city": "Trondheim",
9 "state": "Sør-Trøndelag",

10 "country": "Norway"
11 },
12 };
13
14 o.Auth.authCodeFlow({
15 authenticateOnStart: !1,
16 apiAuthenticateUrl: function() {
17 var t = "/sign-in/?routeTo=" +
18 encodeURIComponent(WB_wombat_self_location);
19 return WB_wombat_self_location = t
20 },
21 refreshAccessTokenUrl:

"/profiles/refreshToken/"↪→
22 });
23
24 function s(t) {
25 var e = t.headers.WB_wombat_self_location;
26 if (e && this.settings.followLocation &&
27 201 === t.status) {
28 var n =
29 {method: "GET",url: e,responseType:

"json"};↪→
30 return this.send(n);
31 }
32 return t.headers.link && "string" == typeof

t.headers.link↪→
33 && (t.headers.link = l(t.headers.link)), t;
34 }

// live web version
window.__PRELOADED_STATE__ = {

"location": {
"id": "fcc2fd44-d82e-45ca-8855-35ee6b8bfbe9",
"latitude": 63.44,
"longitude": 10.4,
"name": "Trondheim, Norway",
"city": "Trondheim",
"state": "Sør-Trøndelag",
"country": "Norway"

},
};

o.Auth.authCodeFlow({
authenticateOnStart: !1,
apiAuthenticateUrl: function() {

var t = "/sign-in/?routeTo=" +
encodeURIComponent(location);

return location = t
},
refreshAccessTokenUrl:

"/profiles/refreshToken/"↪→
});

function s(t) {
var e = t.headers.location;
if (e && this.settings.followLocation &&

201 === t.status) {
var n =

{method: "GET",url: e,responseType:
"json"};↪→

return this.send(n);
}
return t.headers.link && "string" == typeof

t.headers.link↪→
&& (t.headers.link = l(t.headers.link)), t;

}

Not actual location

Actual location

Not actual location

Fig. 6. Archive-It rewriting the identifier “Location” in the archived javaScript of
mendeley.com user pages

This technique of sever-side JavaScript rewriting is useful for ensuring that archived
JavaScript cannot initiate browser navigation to the live web when using the “location”
identifier found on the global window object [12] and is used in combination with
client-side rewriting. Because Archive-It’s and Webrecorder’s server-side rewriting
were targeting all instances of the “location” identifier even if they were not responsible
for browser navigation, their client-side rewriting libraries had to make modifications
to the archived JavaScript and the JavaScript environment of the browser. Depending
on the replay system’s rewrite mechanisms, the JavaScript of the page could collide
with the replay system, causing undesired effects. But that was not the true reason
of the continual redirection; rather, there is no web archiving standard on the replay
of HTTP Cookies which the page required for authentication even on pages accessible
without an account (Chapter 5).

Thus, the page’s JavaScript thought the replayed page being viewed required the
viewer to sign in and will always cause redirection to happen before the page has

11

loaded. It is these issues that exemplify a host of other issues that are challenging
the web archiving community’s perception of performance [16] and capture [17].

1.1 CONTRIBUTIONS

The web archiving community lacks the terminology to describe the existing
styles of replay, which are dependent on the policies of the web archive, and the
modifications made to an archived web page and its embedded resources in order to
facilitate replay. Because of this, there are only ad hoc standards for the replay of
archived web pages. To provide the terminology necessary for describing both the
existing styles of replay and the modifications made to facilitate replay, which will
hopefully improve the replay of archived web pages, the contributions of this thesis
are as follows:

• Provide a classification of and terminology for the current styles of replay
(Chapter 4)

• Provide a classification of and terminology for the modifications made to an
archived web page to facilitate replay (Chapter 4)

• Propose a standard and generalized method for the generation of client-side
rewriting libraries (Chapter 4)

• Provide a classification of and terminology for the modifications made to
an archived web page’s JavaScript in order to facilitate client-side rewriting
(Chapter 5)

• Detail a combination server-side and client-side rewriting technique that de-
creases the amount of modifications made to archived JavaScript and provides
an archive more control over replay (Chapter 5)

• Evaluate the effectiveness that client-side rewriting would have in augmenting
already existing server-side rewriting systems of an archive (Chapter 5)

1.2 THESIS ORGANIZATION

This thesis has six chapters. In Chapter 2, we discuss the concepts necessary to
understand replay of archived web pages. We provide an overview of HTTP, HTML,
JavaScript, how viewing a web page in a web browser works, Memento, the archival
and replay of web pages, and URL rewriting. In Chapter 3, we discuss previous works
that have also looked at the issues surrounding the archival and replay of web pages.

12

In Chapter 4, we progressively classify and define terminology for the existing styles of
replay and the modifications made by them to facilitate replay by considering in detail
how the Internet Archive, Webrecorder and archive.is replay the contents of their
archives. In Chapter 5, we propose a method for the auto-generation of client-side
rewriting libraries through the usage of the Web Interface Design Language [18]
definitions for the JavaScript APIs of the browser. We also provide classification and
terminology for the modifications made to the JavaScript environment by the client-
side rewriter and provide a solution to decrease the amount of server-side rewriting
preformed on archived JavaScript in order to, for example, ensure JavaScript can not
navigate the browser to the live web (Figure 6). Finally, in Chapter 5, we evaluate the
effectiveness of the generated client-side rewriting library in augmenting the already
existing server-side rewriting systems of the Internet Archive’s Wayback Machine. In
Chapter 6, we discuss the conclusions from this work, the contributions of this work
and future work, which could be done as an extension of this thesis.

13

CHAPTER 2

BACKGROUND

In this chapter, we will discuss the concepts necessary to understand the remainder of
this thesis. We will discuss the Hyper Text Transport Protocol (HTTP), the primary
means by which the information on the web is sent and received. Then we will discuss
Hyper Text Markup Language (HTML), the primary markup language for creating
pages and applications on the web. Then we will discuss JavaScript, the programming
language of the web and will give an overview of the rules involved when viewing
a web page using a web browser. Then we will discuss the Memento protocol, an
extension to HTTP to support versioning and archiving. Finally, we will discuss
archiving and replaying pages, closing with a discussion on URL rewriting.

2.1 HYPER TEXT TRANSPORT PROTOCOL (HTTP)

HTTP [19] is the primary protocol for retrieving or modifying resources [20] on
the World Wide Web (Web). Each web accessible resource is identified by a Uniform

Resource Identifier (URI) [21], or more commonly known as Uniform Resource
Locator (URL). The primary distinction between an URI and URL is that an URL
“refers to the subset of URIs that, in addition to identifying a resource, provide a
means of locating the resource by describing its primary access mechanism”, whereas
a URI may be used to identify or name any conceivable resource [21].

As shown in Figure 7, the first part of a URI is the scheme. A URI’s scheme
defines the protocol used during dereferencing (a process by which you retrieve
the resource’s representation). The scheme for a URI does not necessarily have to be
either HTTP [19] or HTTPS [22] (HTTP over Transport Layer Security) but may
be protocol-less or some other defined protocol such as ftp. After the URI scheme
comes its authority which is comprised of host and optional port. The authority
for an URI states the host (owner) of the resource and is also used by the browser
to apply security polices on a resource (which will be discussed further on in this
chapter). The optional port portion of the authority is used for the TCP portion
of HTTP(S) and is beyond the scope of this thesis. Following a URI’s authority

14

is the path. The path for a URI “serves to identify a resource within the scope of
the URI’s scheme and naming authority (if any)” [21]. The query portion of a URI
represents non-hierarchical data if any and is used to execute a query against the
resource the URI identifies. Note that the only hierarchical portions of a URI are
the authority and path. The final part of a URI is the fragment, which identifies a
secondary resource contained in the resources itself.

https ://zeppelin.led:8080 /stairway?to=heaven#theresALady

Scheme

Port

Authority

Host

Path Query Fragment

Fig. 7. Anatomy of a URI

All of this information is used by a user-agent during the process of retrieving the
representation of a URI, called dereferencing, in the form of request and response

pairs. A HTTP request is made to the origin server by a client using one of the
available HTTP methods [23]. Table 1 lists a subset of the available methods. Each
HTTP method has its own semantics and usage. For example, a GET request is used
to ask the origin server for the representation of a URI, and an OPTIONS request
is used to ask the origin server for specific details about the available methods for the
target URI.

15

Table 1
RFC 7231 HTTP methods

Method Usage

GET Request to receive a resources representation.

HEAD Request only the HTTP headers of the GET request.

POST Request the resource to process the body of request.

PUT Request to create or update the resource using the request’s body.

DELETE Request to delete or remove the resource.

OPTIONS Request for information concerning communication options for the
resource

The requests and responses follow a general format which can be seen in Figure 8.
A request will begin with a request line which is comprised of the HTTP method, the
path of the URI and the HTTP version used. Following the request line is a series
of HTTP headers. HTTP headers [23, 24] convey additional information about the
request or response and are also a required part of content negotiation (Figure 8).

Fig. 8. Anatomy of content negotiation

16

The content negotiation process is started when a client de-references a URI by
sending HTTP headers indicating the desired representation of the URI (Accept-Type)
and the preferred language (Accept-Language). When the server receives the request,
the server determines if it has the corresponding representation indicated by the client.
The server then replies with a response that begins with a response line comprised
of the HTTP version, the status code and reason followed by HTTP Header fields
that indicate which representation was sent (Figure 8). The Content-Location header
indicates to the client the actual URI of the representation if there are more than
one, the Content-Type header indicates the type of the representation sent, and the
Content-Language header indicates which language the representation is in. The
Vary header informs the client in which dimension content negotiation was applied.
The size of the response body, if there was one, sent by the server is indicated by
the Content-Length header. The status code plus reason indicates if the request was
successful or not. Table 2 lists the status code types alongside their corresponding
meaning.

Table 2
HTTP status code classes

Status Class Meaning

1xx Informational The server understood the original request and the client
may proceed

2xx Successful The request completed and there maybe a response

3xx Redirection The first URI has moved to a new URI (location)

4xx Client Error Your request was faulty

5xx Server Error The server ran into an issue

For example, if the request was successful (Figure 8) then the response code and
reason would be 200 OK. If the server wished to indicate that the resource requested
using the initial URI has moved to another location, it would use the status code
302 and including the location header in the response’s HTTP Headers. An example
of this can be seen in Figure 9, which highlights the content negotiation process for
redirection.

17

As seen in Figure 9, when the client receives the response for the initial re-
quest, the location header field indicates that the representation for the URI http:/
/example.com/example is temporarily located at a new URI http://example.com/
overhereNow. Now the client makes another request dereferencing the new URI and
then received a response with status 200 OK and ending negotiations. The final
portion of the response is the response body which does not necessarily have to be
included as is the case for a 302 response. Additional cases for when a response
may not contain a response body is when the status code for the response is 204 No
Content or 404 Not Found, indicating there is no content or the request’s URI does
not exist on the server, respectively.

Fig. 9. HTTP request with redirection

2.2 HYPER TEXT MARKUP LANGUAGE

Hyper Text Markup Language (HTML) is the most popular document type
for representing web pages. HTML only conveys the structure of the web page, relying
on a third party to render its content. Each web page contains many HTML elements

18

(tags) in any order that the author of the page desires, but there are three main
elements. The first of these tags is the html tag. Figure 10 contains the HTML for
the web page http://example.com and will be the listing used when referring to line
numbers, e.g. tag line 1. A rendering of the HTML shown in Figure 10 when rendered
using the Google Chrome web browser can be seen in Figure 11.

The html tag on line 2 is considered the document element and is the root of
HTML documents. All other elements in the document are considered a child of
this tag. The first child of the html tag is the head tag and contains elements that
define metadata about the document or bring in or define resources for the page.
The contents of the head tag of Figure 10 (lines 4 through 5) contain a single title
tag, three meta tags, and a single style tag. The title tag defines the title of the
page and the style tag contains the CSS style definitions for the page. One may also
include CSS by using the link tag. There are two meta tags which demonstrate the
ability for the page’s creator to control the inner workings of the browser or apply
additional HTTP headers through this tag. Figure 10 (lines 6 and 7) contains two
meta tags that provide that level of control for the pages’ creator.

19

Fig. 10. The HTML of the famous http://example.com

The first meta tag in Figure 10 contains the attribute http-equiv1. The http-equiv

attribute for a meta indicates that the value of the tags content attribute is used
to simulate the exact same behavior as if it were included in the HTTP headers
of the response for the page. HTTP headers may be used in a meta tag if and
only if the value for http-equiv is a valid HTTP Header and is one of the allowed
HTTP headers allowed for this tag, namely Content-Type, Content-Language,
Content-Security-Policy, and Set-Cookie. The second meta defines how mobile
browsers should render the page. The only tag not found in the head tag of Figure 10
that is typically included is a script tag which contains or brings in JavaScript.

After the head tag, is the body tag which contains the content of the document
and may include every HTML element defined in the HTML specification [12]. In
addition to the attributes defined for an element, the fifth revision of the HTML
1Note that this thesis uses the convention of denoting HTML tags, JavaScript objects or functions
and like entities using typewriter text styling whereas we use italics to denote their attributes

http://example.com

20

specification allows for custom attributes to be on any given element [25], not just
those defined for the element.

Fig. 11. http://example.com rendered by Google Chrome

2.3 JAVASCRIPT (JS)

JavaScript (ECMAScript) is the programing language of the web [26]. Even
though the full capabilities of the JavaScript programming language is beyond the
scope of this thesis, the ability for JavaScript to make additional HTTP requests,
create and manipulate the HTML document (DOM), and, to some extent, control
the location of the browser are within this thesis’s scope. An example for each of
JavaScript’s capabilities that will be discussed can be seen in Figures 12 and 16.
Example 1 shows us four things; the first is making a complex request (Figure 12,
lines 1-9).

http://example.com

21

Fig. 12. JavaScript making an HTTP request for an image and mutating the DOM
by adding an img tag whose src attribute is a Blob URL

The function getImg makes a request for an image using “credentials” (line 4).
When the request is sent, it includes the authentication information (cookies) the
server sent with the response for the root page this JavaScript snippet would be
associated with. The typical use case for using the credentials sent over by the server
in a JavaScript initiated request is to validate that the user has permission to view
the resource. We will not go into details about HTTP authentication [27, 28] as it is
out of scope for this thesis. Once the response for this request comes back, the raw
data of the image is transformed into a Blob URL [29] and a new HTML Image is
added dynamically to the original document using the JavaScript DOM APIs (lines
5-8) [30, 12].

Fig. 13. Ways additional JavaScript can be introduced into the page

Example 2 (Figure 13) demonstrates three different ways additional JavaScript can
be introduced into the page. The first way additional JavaScript can be introduced
into page (lines 12-15) is similar to the first example in that the newly created script

22

tag has its src attribute set to URL that points to a JavaScript file. Setting the src

attribute to a valid URL pointing to a JavaScript file causes the browser to initiate
an additional resource fetch (HTTP GET request) [12], and when the response comes
back, the browser executes the contents of that file. The second way additional
JavaScript can be introduced into the page (lines 16-18) also creates a new script
tag, but instead of requiring an additional HTTP request for the contents of the script
tag, the innerText attribute of the tag may be set to a valid string of JavaScript code.
When this tag is added to the document, the browser will execute the JavaScript
code inside the tag. The third way, (Figure 13 line 19), demonstrates how JavaScript
does not need to use a script tag to introduce additional JavaScript code into the
page but can use the eval function [31]. The eval function will execute any string of
valid JavaScript code that is supplied to the function; this string may come from any
source as long as it is indeed valid JavaScript.

Fig. 14. JavaScript adding an HTTP cookie to the page

Example 3 (Figure 14) shows how JavaScript can add additional cookies to the
browser. If, for instance, example 3 was executed before example 1 (Figure 12,
lines 3-9) then the additional cookie added to the browser would be sent alongside
any additional cookies the browser had before example 3 was added. Example 4
(Figure 15) demonstrates how JavaScript can control the location of the browser.
When window.location is set to any other valid URL other than the current location,
it will cause the browser to navigate away from the currently viewed page.

Fig. 15. JavaScript changing the location of the browser

Example 5 (Figure 16, lines 3-5), demonstrates how JavaScript can manipulate the
history of the browser and change both the Referrer HTTP header sent by the browser
and the page’s title [12]. The pushState function of the history object (line 3) takes
three arguments, the first is history state (information about the “new location”), the

23

second argument is the new title for the page, and the third argument is the “new
location” (displayed in the location bar of the browser). Only the pushState function
can change the Referrer HTTP header and add a new history entry to the browser.
Whereas the replaceState function (line 5), which takes the same arguments as
pushState, only replaces the current history entry while still updating the page’s
title and location displayed in the navigation bar of the browser.

Fig. 16. JavaScript for changing browser history

Example 6 (Figure 17) demonstrates how JavaScript can change the domain of the
page, if and only if the new domain is parent domain of the current orgin [12].

Fig. 17. JavaScript for changing the domain of the browser

2.4 BROWSERS AND VIEWING A WEBPAGE

As previously discussed in Section 2.1, the resources on the web are identified by
URIs; to retrieve the representation (content) of these URIs, you must use a process
called dereferencing. This is what the browser does when it navigates to the URI you
enter into the navigation bar of the browser. The browser will parse the HTML and
dereference additional URIs contained in the HTML elements for images or other
embedded resources. URIs associated with script tags are fetched and executed while
the script tags with in-line JavaScript are executed. The style sheets for a page are
fetched and parsed, bringing in additional styling resources such as fonts or images
alongside embedded images, video, or audio files, which are also fetched and applied
to the document.

All this happens when you first view the page and is not limited to dynamic
additions of HTML elements or HTTP requests by JavaScript. A noteworthy and

24

important HTML element that can bring in an entirely new browsing context (full
HTML page at another URI) is the carrier iframe element. This element, when
introduced into the page, behaves as if you had navigated the browser to its URI,
but security restrictions limit its interactivity with the embedding page. It is these
security restrictions on which the remaining portions of this section will focus; namely,
the origin based restrictions placed on resource fetches by JavaScript. The browser’s
(document’s) origin [32, 12] is set when the browser navigates to the URI. For
example, when your browser navigates to http://awesome.example.com, the origin of
the document is set to awesome.example.com.

This means that if the page at awesome.example.com wished to use its embedded
JavaScript to make requests to or load additional resources from super.example.com,
these requests would be restricted by the Cross Origin Resource Sharing (CORS)
protocol [33]. CORS can be explained concisely in the flowchart in Figure 18, which
states that anything other than a simple request to the remote server requires the
browser to retrieve a server’s authorization for the request. The term “simple” refers to
the HTTP methods (GET, HEAD, and POST) which make requests with the Content-
Type HTTP header set to application/x-www-form-urlencoded, multipart/form-data,
or text/plain. Any other method or request for content type would make GET, HEAD
or POST requests non-simple. This also includes the usage of custom headers, even
on request methods that would be considered simple.

25

Fig. 18. Anatomy of a CORS request

Now the page at awesome.example.com may circumvent this process for making
requests to super.example.com through using the JavaScript DOM API to set the
document.domain to example.com. This is permissible because both awesome and
super are suffixes of the origin example.com and changing the domain (origin) of
the document to the shorter common prefix would no longer render requests to
super.example.com from awesome.example.com governable by CORS. This also affects
how the page at example.com could interact with any iframes it may embed from
super.example.com, e.g. access the content that may be embedded inside of the
iframe.

26

2.5 MEMENTO FRAMEWORK

The Memento Framework [34, 35, 36] defines inter-archive coordination, as well
as provides succinct terminology for referring to archived resources and the inner
workings of web archiving. In the thesis when we refer to web archiving we refer
to it as the process by which a web resource becomes preserved at a given point in
time. In the previous sections we discussed how each resource on the web is identified
by a URI; when referring to URIs using the Memento framework’s terminology, it
is a URI-R. A URI-R “is used to denote the URI of an Original Resource” and
a URI-M “is used to denote the URI of a Memento”, a memento represents “an
Original Resource as it existed at time T” [35].

$ curl -I http://web.archive.org/web/http://grindtodeath.com/ -H
'Accept-Datetime: Wed, 31 Oct 2012 09:52:40 GMT'↪→

> HEAD /web/grindtodeath.com/ HTTP/1.1
> Host: web.archive.org
> User-Agent: curl/7.58.0
> Accept: */*
> Accept-Datetime: Wed, 31 Oct 2012 09:52:40 GMT

> HTTP/1.1 302 FOUND
> Server: Tengine/2.2.2
> Date: Wed, 07 Mar 2018 22:15:53 GMT
> Content-Type: text/plain; charset=utf-8
> Content-Length: 32
> Connection: keep-alive
> Location: http://web.archive.org/web/20121031095240/http://grindtodeath.com/
> Vary: accept-datetime
> Link: <http://grindtodeath.com/>; rel="original",

<http://web.archive.org/web/20121031095240/http://grindtodeath.com/>;
rel="memento"; datetime="Wed, 31 Oct 2012 09:52:40 GMT",
<http://web.archive.org/web/timemap/link/http://grindtodeath.com/>;
rel="timemap"; type="application/link-format"

↪→
↪→
↪→
↪→

Fig. 19. Temporal content negotiation with the Internet Archive’s TimeGate to select
the best Memento for the web page http://grindtodeath.com/ at the datetime
Wed, 31 Oct 2012 09:52:40 GMT

A TimeGate (URI-G) is a resource that will select (negotiate) the closest URI-M
for a URI-R based on the datetime supplied in the accept-datetime HTTP header.
As shown in Figure 19, the Internet Archive’s TimeGate indicated it had found the
best URI-M for the URI-R http://grindtodeath.com/ at datetime Wed, 31 Oct 2012
09:52:40 GMT by sending an HTTP 302 Found response whose location HTTP
header is set to the URI-M of selected memento. Also included in the response from

http://grindtodeath.com/

27

the TimeGate was the URI for the page’s TimeMap (URI-T) found in the responses
Link header. TimeMaps (Figure 20) for a URI-R contain a listing of the URI-Ms an
archive has in a machine readable format. The TimeGate utilizes these listings to look
up the closest datetime of the URI-Ms an archive contains for a particular URI-R.
The relationship between mementos, TimeMaps, and the TimeGate are important
as they provide a basis for this thesis, which is replaying (viewing) mementos of an
archived web page using a browser.

$ curl http://web.archive.org/web/timemap/link/http://grindtodeath.com/
> GET /web/timemap/link/http://grindtodeath.com/ HTTP/1.1
> Host: web.archive.org
> User-Agent: curl/7.58.0
> Accept: */*

> HTTP/1.1 200 OK
> Server: Tengine/2.2.2
> Date: Wed, 07 Mar 2018 22:15:53 GMT
> Content-Type: application/link-format
> Transfer-Encoding: chunked
> Connection: keep-alive

> <http://www.grindtodeath.com:80/>; rel="original",
> <http://web.archive.org/web/timemap/link/http://grindtodeath.com/>; rel="self";

type="application/link-format"; from="Fri, 20 May 2011 21:12:15 GMT",↪→
> <http://web.archive.org>; rel="timegate",
> <http://web.archive.org/web/20110520211215/http://www.grindtodeath.com:80/>;

rel="first memento"; datetime="Fri, 20 May 2011 21:12:15 GMT",↪→
> <http://web.archive.org/web/20110621074527/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Tue, 21 Jun 2011 07:45:27 GMT",↪→
> <http://web.archive.org/web/20110724010002/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Sun, 24 Jul 2011 01:00:02 GMT",↪→
> <http://web.archive.org/web/20110824011507/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Wed, 24 Aug 2011 01:15:07 GMT",↪→
> <http://web.archive.org/web/20110825033443/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Thu, 25 Aug 2011 03:34:43 GMT",↪→
> <http://web.archive.org/web/20110902012722/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Fri, 02 Sep 2011 01:27:22 GMT",↪→
> <http://web.archive.org/web/20110919001004/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Mon, 19 Sep 2011 00:10:04 GMT",↪→
> <http://web.archive.org/web/20111001180937/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Sat, 01 Oct 2011 18:09:37 GMT",↪→
> <http://web.archive.org/web/20111004172756/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Tue, 04 Oct 2011 17:27:56 GMT",↪→
> <http://web.archive.org/web/20111104061223/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Fri, 04 Nov 2011 06:12:23 GMT",↪→
> <http://web.archive.org/web/20111120224218/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Sun, 20 Nov 2011 22:42:18 GMT",↪→
> <http://web.archive.org/web/20111201154328/http://www.grindtodeath.com/>;

rel="memento"; datetime="Thu, 01 Dec 2011 15:43:28 GMT",↪→
> <http://web.archive.org/web/20111205031921/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Mon, 05 Dec 2011 03:19:21 GMT",↪→
> <http://web.archive.org/web/20120104221730/http://www.grindtodeath.com:80/>;

rel="memento"; datetime="Wed, 04 Jan 2012 22:17:30 GMT",↪→
> <http://web.archive.org/web/20120127115831/http://www.grindtodeath.com/>;

rel="memento"; datetime="Fri, 27 Jan 2012 11:58:31 GMT",↪→
> ...

Fig. 20. TimeMap for the web page http://grindtodeath.com/ retrieved from the
Internet Archive

http://grindtodeath.com/

28

When viewing an archived web page via the browser, the term replay encompasses
both the browser auto-dereferencing the page plus embedded resources with the
process the archive uses to resolve the URI-Ms contained within the page that the
browser requests from the archive. Not only is the browser dereferencing the URI-M
we wish to view, but also all other URIs contained in the representation of the URI-M.
Encompassing this process is what Ainsworth et al. describe as a Composite Memento,
“a root URI-M and all embedded URI-Ms required to recompose the presentation
at the clients” [37]. In other words, composite mementos encompass the state and
composition of a web page as it potentially existed at preservation time when accessed
by the browser.

2.6 ARCHIVING AND REPLAY OF WEB PAGES

Web archives facilitate the replay of mementos. The oldest and most famous
of these is the Internet Archive [8, 38]. Founded in 1996 by Brewster Kahle, the
Internet Archive provided fundamental infrastructure for web archiving as a whole by
providing the de facto means for the creation of mementos and the means to replay
those mementos.

The Internet Archive uses Heritrix for its archival crawler [39]. Heritrix operates
similarly to the browser in that it extracts all the URI-Rs contained within a web
page [40] but without rendering of the page or execution of a page’s JavaScript.
Heritrix generates a Web ARChive (WARC) file [41] which stores the HTTP requests
and responses during crawling Figure 22). WARC files generated by Heritrix or any
other means are considered a snapshot of the web page as it existed at preservation
time and, as discussed in the previous section (Section 2.5), constitutes a composite
memento. The Internet Archives in turn makes these WARC files available for replay
through the Wayback Machine.

The Internet Archive’s Wayback Machine [42, 43] is a combination front-end user
interface to the contents of the archive and replay engine for viewing its archived web
pages at a given point in time. The main page of the Wayback Machine (Figure 21a)
allows users to enter a URI-R of web page in order to see if it is contained in the
archive or select one of the promoted web pages to view. When a user enters in a
URI to view, they are taken to a calendar view (Figure 21b) that displays the date of
each memento, on which a user may click to view (Figure 21c).

29

(a) Internet Archive Wayback Machine’s main page

30

(b) Internet Archive Wayback Machine’s datetime selection

31

(c) Internet Archive Wayback Machine’s Replay View

Fig. 21. Wayback Machine’s interface For http://www.nocleansinging.com/

32

WARC/1.0
WARC-Type: request
WARC-Target-URI: http://example.com/
WARC-Date: 2017-10-03T21:32:53Z
WARC-Concurrent-To: <urn:uuid:69b8c0e0-a882-11e7-a534-7723e03cfee4>
WARC-Record-ID: <urn:uuid:69bc1c40-a882-11e7-a534-7723e03cfee4>
Content-Type: application/http; msgtype=request
Content-Length: 369

GET / HTTP/1.1
Host: example.com
Connection: keep-alive
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.38 Safari/537.36
Upgrade-Insecure-Requests: 1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9

WARC/1.0
WARC-Type: response
WARC-Target-URI: http://example.com/
WARC-Date: 2017-10-03T21:32:53Z
WARC-Record-ID: <urn:uuid:69bc9170-a882-11e7-a534-7723e03cfee4>
Content-Type: application/http; msgtype=response
Content-Length: 1577

HTTP/1.1 200 OK
Cache-Control: max-age=604800
Content-Type: text/html
Date: Tue, 03 Oct 2017 21:32:42 GMT
Etag: "359670651+gzip"
Expires: Tue, 10 Oct 2017 21:32:42 GMT
Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
Server: ECS (atl/FC90)
Vary: Accept-Encoding
X-Cache: HIT
Content-Length: 1270

<!doctype html>
<html>
<head>

Fig. 22. WARC file contents containing the HTTP requests and responses for the
preserved web page http://example.com

2.7 URL REWRITING

This section discusses the current strategies employed by archival replay systems
to ensure cohesive replay of an archived page and all of its embedded resources. This
section will describe the methodology used by the open source implementation of
the Wayback Machine, namely OpenWayback2 and Pywb3, which are derived from
the original closed source implementation used by the Internet Archive. Although
there exist additional archival replay systems beyond those previously mentioned
(e.g., PageFreezer4 and WebCitation) this section does not go into detail about their
archival replay systems simply because they are closed source. URL rewriting is the
2https://github.com/iipc/openwayback
3https://github.com/ikreymer/pywb
4https://www.pagefreezer.com/

http://example.com
http://www.webcitation.org/
https://github.com/iipc/openwayback
https://github.com/ikreymer/pywb
https://www.pagefreezer.com/

33

overall process for ensuring that the associated URIs for a memento (whether they
be URIs to embedded resources or part of the archived HTTP headers) refer back
to the archive on replay. For example, if we wish to view a memento for the URI-R
http://example.com on “Sat, 07 Oct 2017 03:58:07 GMT” replayable from an archive
at the URI http://archive.com we would use:

http://archive.com/20171007035807/http://example.com

Note that the actual URI-M used to replay a memento is dependent on the archives
replay system. Now when we replay this memento, the natural assumption is that we
will be viewing http://example.com at the Memento-Datetime and that any additional
URI-Rs contained within the representation of the URI-M for example.com are also
rewritten to include the time of the archived page. In order to rewrite URIs, archives
rely on configurations that list what in the archived resources might contain URI-Rs
that need to be rewritten. An example of this can be found in Figure 26, which lists
the configuration used by OpenWayback’s standard attribute rewriter.

The standard attribute rewriter of OpenWayback is used to rewrite the URI-Rs
contained in HTML element attributes to URI-Ms. As we can see in Figure 26, the
standard attribute rewriter is targeting HTML elements that contain src and href
attributes as well as element attributes that OpenWayback considers experimental.
Take for instance the configuration file’s entry for the rewriting the link tags href for
stylesheets:

LINK[REL\=STYLESHEET].HREF.type=cs

You will notice that it does not explicitly define how the URI-R for

<link rel="stylesheet" href="...">

should be rewritten but rather it defines a modifier to be added, alongside the archival
time of the replayed memento, acting as a hint for the archive indicating the specific
rule based rewriter that should handle the rewriting of the resource (Figure 23).

<!-- pre rewritten -->
<link rel="stylesheet" href="/css/style.css">
<!-- post rewritten -->
<link rel="stylesheet" href="/20171007035807cs_/css/style.css">

Fig. 23. Pre And Post Rewritten Link Tags

34

Rule-based rewriters, as the name implies, rely on rules to perform the actual
rewriting. These rules are derived from the rewrite modifiers added to the URI-Rs by
the attribute rewriter and regular expressions. The corresponding stylesheets rewriter
as used by Pywb is shown in Figure 24.

Fig. 24. Pywb CSS regex rewriter

This rewriter defines two regular expressions (rules) that cover the combinations
in which URIs can exist in CSS files (Figure 25). The regular expressions used by
each respective rewriter must be applied to each and every line of the file they are
rewriting. When one of the rules matches the current line of the file being rewritten,
the rule is applied and the rewriter moves on to the next line. If none of the rules
matches the current line, the rewriter will move on to the next until one of its rules
matches or it reaches the end of file. This is the totality of the URL rewriting process
and is the typical manner Wayback Machine implementations rewrite the URL-Rs to
URI-Ms. It must be noted that non-Wayback Machine archives can do the rewriting
differently or not at all (e.g., cached pages in search engines and historical MediaWiki
pages). The URL rewriting process is an extremely important part of replay. If it was
not for URL rewriting, the embedded resources of an archived web page would still
point to the live web resulting in live web leakage or “zombies in the archive” [44].

35

Fig. 25. URIs in CSS files

Fig. 26. OpenWayback standard attribute rewrite configuration

36

2.8 SUMMARY

In this chapter, we discussed the concepts required to understand the remainder
of this thesis. We looked at the roles that HTTP, HTML, and JavaScript have in
the viewing of web pages using a web browser. We discussed the Memento protocol
and how it ties into the replay of archived web pages. We then discussed the overall
process of replaying archived web pages and how the Internet Archive’s Wayback
Machine functions at a high level. Finally, we discussed the URL rewriting process,
which is critical for understanding chapters 4 and 5 of this thesis.

In the next chapter, we will discuss the work others have done that addresses the
dynamic nature of the web.

37

CHAPTER 3

RELATED WORK

This chapter discusses previous work that has addressed the dynamic nature of the
web and/or identified the effects of un-archived resources during replay.

3.1 ARCHIVING DYNAMIC CONTENT

In 2014 Mat Kelly created a test suite, the Archival Acid Test [45], for evaluating
the ability of archival crawlers and replay systems for handling the more dynamic
content of the web. The Archival Acid Test consists of three categories to test
specific aspects of how well an archival crawler can preserve both dynamic and non-
dynamic web content. The first category of the test determined a crawler’s ability
to identify and handle URI variations such as relative (someFile.ext) or scheme-less
URIs (//server.com) [21, 46]. The second category of tests examined how well the
archival crawler could extract URIs from the JavaScript files which were used to bring
in additional resources when executed by the browser viewing the test page. The
final category tested a crawler’s ability to know where to look for URIs used in more
complex JavaScript and HTML interactions other than simple DOM manipulation.

Fig. 27. Archival Acid Test tool evaluation results as of December 2014, [45, p. 3
Table 2]

Most archival crawlers and replay systems tested by Kelly (Figure 27) properly
handled the first category of tests but only a few comprehensively handled the majority

38

of the tests. It was noted by Kelly that the tests all tools failed to pass were those
involving a delay in resource retrieval. Brunelle et al. [47] conducted a study of 1861
URIs which had mementos from the Internet Archive between 2005 to 2012 in order
identify the impact JavaScript has on the archivability of web pages. In the study,
Brunelle et al. found that JavaScript was responsible for 52.7% of all missing resources
and that by 2012 JavaScript was responsible for 33.2% more missing resources than
in 2005. Brunelle also observed that JavaScript was used by the mementos considered
in the seven-year time span to load 33.7% of all resources, defining the resources
which necessarily involved a delay in retrieval (by JavaScript or other means) as
deferred representations. Similarly, Kelly et al. [48] showed the impact JavaScript has
had on archivability of web pages over time, which was a loss of archived resources as
JavaScript usage increased over time.

3.2 HANDLING THE REPLAY OF DYNAMIC CONTENT

Current strategies for handling replay of dynamic content rely on client-side
intervention either indirectly or directly. The indirect strategy as described by
Alam et al. [49] involves the usage of a ServiceWorker. The ServiceWorker added
by the archive is essentially an added embedded resource for the page capable of
intercepting the HTTP requests made by the currently replayed page. This capability
of ServiceWorkers allows them to be utilized by the archive to rewrite any URI-R
either missed by the archive’s initial URL rewriting or dynamically generated by
JavaScript back to the archive rather than the live web. The direct approach utilizes
the client-side archival rewriting JavaScript library Wombat1. Wombat is utilized by
Pywb and Webrecorder2 to override the JavaScript APIs of the browser to rewrite
any unwritten URI-Rs into URI-Ms. Wombat includes a full URL rewriting system
which utilizes overrides of the JavaScript Web and DOM APIs in order to rewrite
any URIs which were missed during the server-side rewriting process. Even though
usage of these strategies does not necessarily guarantee a decrease in the proportion
of missing resources to non-missing resources of a replayed memento, these strategies
seek to increase the viewer’s perception of archival quality.

1https://github.com/ikreymer/pywb/blob/master/pywb/static/wombat.js
2https://webrecorder.io/

https://github.com/ikreymer/pywb/blob/master/pywb/static/wombat.js
https://webrecorder.io/

39

3.3 SECURITY AND THE ARCHIVE

Replaying archived web pages that contain unarchived resources has brought up
security concerns about how these unarchived resources could be used to alter the
validity of the archived page. The leakage of live web resources into the replay of
mementos is refereed to as “zombies in the archive” [44, 50]. The term “zombies”
is used to refer to live web resources that leak into replay due to the fact that
mementos are considered “dead”, whereas live web resources are “alive”. As discussed
in Section 3.1, the primary cause of live leaking, “zombie” resources in the archive is
JavaScript. Due to the lack of rewriting URI-Rs dynamically created by JavaScript
on the part of the archive, when replaying a memento containing zombies, the zombie
resources may give the false appearance that the archive has tampered or altered the
memento and or its embedded resources.

Web archives do not or cannot preserve every resource for every page they archive
[47, 48, 51, 52]. Due to this fact, archived web pages that are missing a portion of
their embedded resources, when replayed, appear damaged. Brunelle, Kelly et al. [53,
54] looked at the proportion of missing resources for mementos in order to assess
their damage, finding that the users’ perception of damage to be a more accurate
metric for judging archival quality than the proportion of missing resources. This is
an important finding considering that web archives do not preserve every resource of
a preserved page and, depending on how damaged a memento is when replayed, may
cause one to believe that the archive has tampered with the memento in some way.

Ainsworth et al. [37] looked at the temporal coherence of composite mementos,
would make it appear as if the archive had maliciously modified the memento and
its embedded resources, and found that they can exist in five states. The first state,
called Prima Facie Coherent, represents when an embedded memento exists in the
archive as it does on the live web. The second, called Prima Facie Violative, represents
when an embedded memento does not exist in the archive as it did on the live web.
The third, called Possibly Coherent, represents when an embedded memento might
have existed in the archive as it does on the live web. The fourth, called Probably

Violative, represents a embedded memento that likely did not exist as archived in
comparison to the root memento. The final state, Coherence Undefined, is used to
denote when there is not enough information to accurately determine the memento’s
coherence state.

Lerner et al. [55], unlike the others discussed in this section, describes three attacks

40

targeting web archives that are perpetrated by users of the web archive. The first
attack, called Archive-Escapes, highlighted how the URL rewriting performed by the
archive does not necessarily rewrite URLs generated by JavaScript; this could be
exploited to bring in zombies from the live web. The second, called Same-Origin

Escapes, describes how embedded resources normally disallowed from interacting
with the embedding page because they come from another origin than the page can
interact with the embedding page because the content is replayed from a single origin
(the archives). The final attack, Never-Archived Resources and Nearest-Neighbor

Timestamp Matching, describes how the archive’s inability to archive or rewrite
dynamically added resources could be exploited by identifying an archived page with
missing resources that come from a domain that is unowned. Through purchasing
said domain, the attacker would cause the archive to replace those missing resources
with his own.

The solutions posed by Lerner et al., namely archival modification of JavaScript
at replay time and the separation of replayed content from the archives presentational
components of replay, parallel the existing replay strategies employed by Webrecorder
and Perma.cc [56].

3.4 SUMMARY

In this chapter, we discussed the previous work done by others’ that addressed the
dynamic nature of the web. We looked at how others have created tests for determining
an archive’s ability to replay JavaScript and looked at the studies conducted for
measuring the impact JavaScript has had on web archiving over time. We then
discussed two strategies for handling the reply of dynamic content and how the two
strategies differ. Finally, we discussed security concerns surrounding the replay of
un-rewritten content or lack their off and how this can be maliciously exploited. As
discussed in this chapter, the need for securely handling the replay of dynamic content
is becoming a necessity. In the next chapter, we will begin the discussion of how
secure replay is accomplished.

41

CHAPTER 4

STYLES OF REPLAYING ARCHIVED WEB PAGES

In this chapter we will define terminology for describing the modifications a web
archive applies to mementos in order to facilitate replay. We will also classify further
modifications made to mementos based on the replay strategies employed by an
archive.

4.1 ARCHIVAL LINKAGE MODIFICATIONS

In order to facilitate the replay of mementos archives must modify (rewrite) the
URI-Rs contained in the page and its embedded resources so that they no longer
reference (link) to the “live web” they were archived from but back to the archive
(Section 2.7). We define the modifications made by the archive to a page and its
embedded resources in order to serve (replay) them from the archive as Archival

Linkage Modifications. Archival linkage modifications are the rewriting of URI-Rs
contained within HTML, JavaScript, and CSS of an archived web page. Archival
linkage modifications are not applicable to embedded resources such as PDFs [57] or
the image, audio, and video media types [58] as they do not contain URLs which can
be used to fetch additional resources.

4.1.1 LINKAGE MODIFICATIONS: HTML

In HTML, URI-Rs may exist in the markup as the text content or as an attribute
value for an element. URI-Rs that are a part of an element’s text content do not
necessarily need to be rewritten as they are not typically used for any other purpose
than to be displayed. Conversely, when used as the value of an element attribute
they are used to provide functionality for the page based on the element or attribute
semantics [12].

The HTML specification explicitly defines six attributes, with corresponding
elements that may be used to embedded resources into the page or link to another
page or resource (Table 3).

42

Table 3
HTML elements containing the src and href attributes

Attribute HTML Elements

href a, area, base, link

src

audio, embed, script, img

input, frame, iframe, source

track, embed video

poster video, audio

srcset img, source

action form

data object

Of the six attributes shown in Table 3, the href and src are associated with the
more commonly used HTML elements. The src attribute of the eleven elements
seen in Table 3 is used to embed an external resource into the current page based
on the tag’s semantics. For instance, the script tag is associated with embedding
JavaScript into a page either by including the JavaScript code as the text contents of
the tag or by making the browser fetch the code using the URI-R supplied as the
value for its src attribute.

The href attribute, unlike the src attribute which has only one purpose, has three
purposes based on the semantics of the associated tag. The first purpose is to provide
navigable links within the document’s text through an a tag or a region on an image
that is also a navigable link using the area tag. Rewriting the value of the href

attribute for these tags allows the viewer of the archived page to stay within the
archive when moving between pages rather than going to the live web. The second
purpose for the href attribute defines a “base” URI by which all other values of the
src or href attribute which are relative URIs are resolved by using the base tag.
Rewriting the tag allows the archive to skip rewriting of any relative URI-Rs that
come after the tag because the browser will resolve the un-rewritten relative URIs
using the re-written one provided by the base tags href attribute. The third and final
purpose of the href attribute is used by the link tag to specify a relationship between

43

the current page and an external resource as defined by an additional attribute.
The rel attribute of the link tags indicates how to interpret the link (href) this tag

is making to another resource. For example, if there exist different URIs to a single
page, a common occurrence for e-commerce web sites, the usage of rel=canonical will
indicate to search engines indexing the site that the value provided by the href is
the definitive link to the current page. Using rel=canonical [59] does not require the
browser to fetch an additional resource for the page because the value for rel and href

of the link tag only defines a relationship. The rel types listed in Table 4 indicate the
only necessary modification (rewriting of) the link tag’s href because they necessarily
initiate a browser fetch whereas the other rel types do not [60]. Unlike the explicitly
defined relationship for the attributes displayed in Table 3, the HTML specification
defines custom attributes that may be added to any arbitrary tag.

Table 4
Link Rel Types Requiring A Browser Resource Fetch

Rel Type Indicates

stylesheet Indicates the resource linked to is a stylesheet and
requires the browser to fetch it

prefetch
Requests the browser fetch the resource in advance
as it may be potentially used by the current page
or on another page on the current domain

preload Requires the browser to fetch the resource
immediately as it will be used by the current page

icon Indicates a resource which represents the page to
be used in a browser tab

dns-prefetch Requires the browser to perform a DNS lookup
and protocol handshaking for the resource

manifest The URI-R of the link tag is a web app manifest

import Import a document fragment into the current
document

Custom attributes, as defined by the HTML specification, are attributes that

44

start with “data-” or are any combination of non-space ASCII characters and may
contain any value permissible for HTML attributes [12, 25]. A contrived example
demonstrating the use of custom attributes can be seen in Figure 28, showing how
they are used by a page’s JavaScript (lines 9-10), by its CSS (lines 13), and its use on
custom elements [25] which are purely JavaScript powered (lines 3-20). The definition
of the custom element is associated (registered) with the tag (line 20) by registering
the name of the custom tag to the constructor of the JavaScript definition for the
custom element [12]. Archives must carefully consider each and every custom attribute
of tags even for those that are not explicitly defined in the HTML specification in
order to preserve any potential embeds a custom element may add.

Fig. 28. Custom HTML element using custom attributes

4.1.2 LINKAGE MODIFICATIONS: JAVASCRIPT

JavaScript is a dynamic, interpreted programming language that requires execution
in order to determine the ultimate result of the values the code operates on or produces.
This requires archives seeking to apply linkage modifications to the JavaScript code
for an archived page to carefully consider the context in which an URI-R may appear
in the JavaScript code along with the how and where they may be retrieved from
by the archived JavaScript. Figure 29 shows two examples where it is safe for an

45

archive to rewrite URI-Rs (lines 2,4) and three examples of when it is impossible
to do so (lines 7, 9-12, 14-20). The examples that are rewritable do not involve any
dynamically computed parts, whereas those that do involve dynamically computed
values which are not easily discoverable and thus are not rewritable.

Fig. 29. Live web JavaScript usage of URI-Rs

The un-rewritable nature of dynamically computed URI-Rs, especially those shown
in Figure 29, shows that JavaScript is syntax and interpretation dependent (line 11).
Humans can tell by inspection that “n.src” is associated with the JavaScript DOM
API for the script tag created within the function, but it may as well have been the
src attribute of some object not associated with a DOM element.

Now consider Figure 30, which shows how a script is used to embed JSON into a
page, and Figure 31, showing the JavaScript code used to make the actual request.
The URI-R inside the embedded JSON is clearly identifiable and can be rewritten,
whereas the URI-R created by the JavaScript code performing the actual request
(Figure 31, lines 3-6) cannot. In this case, the URI-R contained in the embedded
JSON (Figure 30) was rewritten and the request was made to the archive instead
of the live web. The archive would now have to consider that the response for the
request, as seen in Figure 32, contains more JSON with URI-Rs that are rewritable.

46

<script id="flik" type="application/json">
{"apiKey":"3e75fa0fe8a8ea56a70bfb66a53e9220","meth":"GET","url":"https://api.flic c

kr.com/services/rest/?method=flickr.people.getPublicPhotos&user_id=32951986%4 c
0N05&extras=url_q&format=json&nojsoncallback=1&api_key="}

↪→

↪→

</script>

Fig. 30. Script tag embedding JSON

Fig. 31. Request made to Flicker API using embedded JSON

{"photos":{"page":1,"pages":26,"perpage":100,"total":"2525","photo":[{"id":"4058784908","owner":"3295 c
1986@N05","secret":"401c422f0d","server":"2585","farm":3,"title":"The supreme triumph of a popular
song -- its hand-organ appe...","ispublic":1,"isfriend":0,"isfamily":0,"url_q":"https:\/\/farm3.stati c
cflickr.com\/2585\/4058784908_401c422f0d_q.jpg","height_q":"150","width_q":"150"}]},"stat":"ok"}

Fig. 32. Response body for the GET request to Flicker API

4.1.3 LINKAGE MODIFICATIONS: CSS

The final component of archival linkage modifications is modifications made to
CSS. Archival linkage modifications made to CSS are trivial in comparison to the
linkage modifications made to HTML or JavaScript as URI-Rs can exist in CSS only
two ways (Figure 33): using the “@import” keyword followed either the name of the
style resource to be imported or by using the “url” keyword. In either case, these
URI-Rs are easily identifiable and thus rewritable.

47

@import "nihility.css"
@import url("http://cssHeaven.com/angelic.css")
@font-face {

font-family: 'TheDude';
src: url('Abides.woff2') format('woff2');

}

Fig. 33. URIs in CSS files

4.2 REPLAY PRESERVING MODIFICATIONS

Replay preserving modifications are modifications made on the part of an archive
to negate the intended semantics of specific HTML element and attribute pairs.
Specifically, these modifications only negate HTML element and attribute pairs that
cause the browser to navigate away from the URI-M (Figure 34), apply a security
policy not originating from the archive (Figure 35), or to embedded a hash of the
original representation for resources loaded by the script and link tags (Figure 40).
The first of these modifications is the negation of meta tags that alters the URI-M
of the currently replayed page and refreshes the browser, causing navigation to the
altered URI-M [50].

<meta http-equiv="refresh" content="35;url=?refresher=666">

Fig. 34. Meta refresh tag

Meta tags that refresh the browser use a HTTP header that never existed “refresh”
and were removed from the fourth revision of the HTML specification [61] but then
added again in the fifth revision [25] due to widespread usage and browser support.
The meta refresh tag seen in Figure 34 defines in the value for the content attribute
a wait time of thirty-five seconds before the browser will refresh the page appending
“?refresher=666” to the current URI of the browser, creating a new URI. When a
browser refresh occurs and the URI has changed, this causes navigation to the new
URL, which is not desired when viewing the page in the archive. In the case of our
example, the new URI navigated to by the browser is the same URI with an added
query parameter, but could well have been a completely different URI or the same
one. This is a commonly used trick by news sites that wish to update the contents

48

of their page without relying on JavaScript. But when such data is archived, this
will change the URI-M of the page to one the archive may not have, simply because
of the added query parameter and the fact that this live web “locally understood”
canonicalization cannot be built into archive replay systems. To mitigate the behavior
of the meta refresh tag, archives can choose to either prefix the http-equiv and content

attributes with an underscore or remove the contents of those attributes. However, if
this behavior is desired, then the URL specified in the value of the content attribute
should not be rewritten.

The second undesired usage of the meta tag in replay is to define a Content
Security Policy (CSP) without using HTTP headers. Content security policies are
used as a defense against malicious content injection (e.g., cross-site scripting) by
defining the origins allowed to be loaded on a given page and are typically delivered
in HTTP headers of the response [62] for the page it should be applied to. The
Internet Archive, as a direct response to the paper by Lerner et al. [55] (discussed in
Chapter 3), is now applying their own content security policy during replay. Content
security policies delivered via HTTP are a non-issue for replay, as the original HTTP
headers are prefixed by the archive using the convention “X-Archive-Orig” when
serving the response on replay [63]. The issue arises when meta tags are used to
define one or more policies for a page. Meta tag delivered policies are additive to any
CSP delivered in the HTTP of the response for the page (Figure 35).

<meta http-equiv="Content-Security-Policy" content="default-src
http://mydomain.com; connect-src http://mydomain.com; frame-src
http://mydomain.com; img-src http://mydomain.com; media-src
http://mydomain.com; object-src http://mydomain.com; script-src
http://mydomain.com; style-src http://mydomain.com; font-src data:
http://mydomain.com; worker-src http://mydomain.com;">

↪→

↪→

↪→

↪→

↪→

Fig. 35. Content Security Policy defined in a meta tag

The meta tag in Figure 35 defines a policy using the directives in Table 5 to
restrict resource origins to http://mydomain.com only. When archived and replayed,
the policy would make the browser refuse to load the embedded resources of both
the archive (if any are present) and the archived pages because the replay origin is
the archives, not the one listed in the policy. For example, consider the archived
page replayed from the Internet Archive seen in Figure 37, which was created to
demonstrate the affects of a meta tag delivered content security policy. The policy it

49

delivers is similar to the one found in Figure 35 except that http://mydomain.com
was replaced with the domain of the page (http://cs.odu.edu) and the full URL
to the page (http://cs.odu.edu/∼jberlin/simpleMetaCSP.html).

Because meta tag delivered content security policies are additive and applied after
any policy that maybe delivered via HTTP headers, the browser refuses to load both
the embedded resources for the page and the Internet Archive banner (Figures 37
and 39). But as seen in Figure 37 the page was preservable using the save page
now feature of the Wayback Machine even though the meta tag delivered content
security policy blocked the Wayback Machine’s control of the page (Figure 38).
To better understand how this was accomplished, consider the annotated HTML
(Figure 36) of the page delivering a content security policy via a meta tag. Because
the content security policy delivering meta tag (line 11) comes before the Wayback
Machine injected banner assets (lines 17-23), the meta tag defined policy is applied to
the injected banner assets plus the pages own embedded resources after the Internet
Archives own policy, thus causing the browser to block them. However, embedded
resources loaded by resources which precede the meta CSP tag (lines 2-9) after the
meta CSP tag has been parsed by the browser will be blocked as well [62]. The nonce
attribute used by the page (Figure 36 lines 14, 26-29) is a cryptographic number
used once (nonce) and is used to white list style and script tags, that is to say
ensure that they will not be blocked by the content security policy [12, 62]. The
only possible mitigation is to change the attributes or values of the tag such that the
browser’s tag and attribute resolution algorithm does not match or to remove the tag
completely. Similar to the CSP defined in a meta tag, which can prevent the browser
from loading all embedded resources that do not originate from the specified origin,
an integrity attribute can be used to prevent the browser from loading the resources
of the link and script tag (Figure 40).

http://cs.odu.edu
http://cs.odu.edu/~jberlin/simpleMetaCSP.html

50

Fig. 36. The HTML of the page delivering a Content Security Policy via meta
tag with the areas affected by the policy during replay from the Internet Archive’s
Wayback Machine highlighted. http://web.archive.org/web/20171003192253/ht
tp://www.cs.odu.edu/∼jberlin/simpleMetaCSP.html

http://web.archive.org/web/20171003192253/http://www.cs.odu.edu/~jberlin/simpleMetaCSP.html
http://web.archive.org/web/20171003192253/http://www.cs.odu.edu/~jberlin/simpleMetaCSP.html

51

Fig. 37. Meta Tag Delivered Content Security Policy preventing Internet Archive
From Loading Wayback Machine Resources. http://web.archive.org/web/
20171003192253/http://www.cs.odu.edu/∼jberlin/simpleMetaCSP.html

http://web.archive.org/web/20171003192253/http://www.cs.odu.edu/~jberlin/simpleMetaCSP.html
http://web.archive.org/web/20171003192253/http://www.cs.odu.edu/~jberlin/simpleMetaCSP.html

52

Fig. 38. Blocked Wayback and archived embedded resources

53

Fig. 39. Meta tag delivered content security policy preventing Internet Archive from
controlling save page now. http://www.cs.odu.edu/∼jberlin/simpleMetaCSP.h
tml

The integrity attribute of the link and script tags shown in Figure 40 consists
of a hash used to validate the hash computed by the browser upon receiving the
response body of the resource [64]. If the browser-computed hash matches the one
provided with these tags, then the resource will be loaded, otherwise it will not. Due
to archives modifying the contents (Sections 2.7 and 4.1), the hashes will not match
and thus, the browser will not load the resource and replay will be affected. Again,
the only option to overcome this is to change the attributes such that they do not
match the browser attribute resolution algorithm or to remove the attribute.

http://www.cs.odu.edu/~jberlin/simpleMetaCSP.html
http://www.cs.odu.edu/~jberlin/simpleMetaCSP.html

54

<link rel="stylesheet" href="theStyleSheet.css" integrity="sha384-eKdwSs2g6PL c
+F9/RnQ14sov7h5SAFYgq8WJln2tXHOSW/7fJt4G+Td7PcVzkJunk">↪→

<script src="theScript.js"
integrity="sha256-qerliYS7q6jrFLa4BJJ3g1ua00vkPz9SjuYsHPLpVzE="></script>↪→

Fig. 40. Integrity attribute of the script and link tags

Table 5
Content Security Policy Directives

Directive Restricts

default-src default origin

script-src JavaScript

style-src stylesheets

img-src images

font-src fonts

object-src plugins

media-src audio and video

frame-src frames or iframes

worker-src service or web workers

connect-src JavaScript HTTP Requests

4.3 SANDBOXED REPLAY

Sandboxed replay is the style of replay that separates the replayed page from the
archive-controlled portion of the page through isolation. The term sandboxing in the
case of replay is similar to the architectural design of the Chromium browser [65, 66].
The Chromium browser separates the browser kernel (e.g., network and filesytem
stacks) from the rendering engine (e.g., HTML and CSS parsing, image decoding and
JavaScript engine). Chromium’s rendering engine is run with restricted privileges
(i.e., in a sandbox) alongside the browser kernel which treats its counterpart as a
black box. For any page to gain access to the outside world (i.e., HTTP requests), it

55

must first be allowed to do so by the browser kernel. Separation of the browser kernel
and rendering engine is a direct reflection of the base assumption the Chromium
development team that the rendering engine is always compromised [66]. Archives
and replay systems that employ this replay paradigm share this assumption, but
rather than assuming the render is always compromised, it is that the pages being
replayed are always compromised.

4.3.1 REPLAY ISOLATION

Archives and replay systems that employ sandboxed replay, namely Webrecorder
and Pywb, do so through Replay Isolation. Replay isolation involves the usage of
an iframe as the sandbox to bring in the actual page being replayed from another
domain. This can be seen when considering the memento of 2016.makemepulse.com
on 2017-06-30T21:54:24 when replayed from Webrecorder1 (Figure 41). The two
green boxes in Figure 41 represent the non-replay, archive added portion of replaying
web pages, whereas the red box represents the actual replayed page. The top green
box highlights the presentation portion of replaying web pages on webrecorder, (i.e., a
navbar) whereas the bottom green box simply highlights additional elements used in
conjunction with the navbar. These elements are on the origin https://webrecoder.io,
unlike the actual memento being replayed, which is embedded using an iframe from
https://wbrc.io, highlighted by the red box. Iframes embed one web page in another
using a browser context i.e., environments in which document objects are presented
to the user [12]. Because iframes bring in what is essentially another browser window
into the current one, they have their own security restrictions that is used by the
archive to achieve replay isolation.
1https://webrecorder.io/jberlin/beautify-js-sites/20170630215424/http:
//2016.makemepulse.com/

https://webrecorder.io/jberlin/beautify-js-sites/20170630215424/http://2016.makemepulse.com/
https://webrecorder.io/jberlin/beautify-js-sites/20170630215424/http://2016.makemepulse.com/

56

Fig. 41. Example of replay isolation’s sandbox on a page replayed by webrecorder.io.
The sandboxed portion is outlined in red.

When the embedded page is from a different origin [12] than the embedding page,
the content brought in has limited access to the embedding page and vice versa. What
the specification means by limited access to the embedded page is that interaction
between the two pages occurs soley through message passing only. Direct access
to the contents of the embedding page by the embedded page is disallowed by the
security features of the browser. Much like how the Chromium browser isolates its
renderer from the browser kernel, sandboxed replay and replay isolation ensure
the separability of archive-controlled presentational components of replay from the
potentially, non-archived controlled replayed page.

The separability inherent to replay isolation can be more easily seen when viewing
the browser provided frame tree (Figure 42). Frame trees are a frame organized
representation of a page’s resources. The web page’s main document is represented

57

as the top frame and each child frame is an embedded iframe contained in the main
page (top frame) or some other frame. Consider the frame tree in Figure 42 for
replay of the http://2016.makemepulse.com memento. The non-replay archive added
portion of replaying web pages exists in the top frame on host webrecorder.io (green
box), whereas the actual memento being replayed exists inside the top frame as the
frame named replay_iframe (red box) on host wbrc.io. Even though the archived-
controlled portion of replay is embedding the replayed memento on webrecorder.io,
replay isolation occurs because the memento is replayed from the host wbrc.io not
webrecorder.io. From the user’s point of view (Figure 43), replay appears to happen
on webrecorder.io, as the archive-controlled portions (green box) and the replayed
page (red box) exist together, but in reality they are isolated.

Providing the same replay experience as if replay separation was not in place
requires that modifications be made to both the embedded resources of the replayed
page and the JavaScript environment that runs the archived JavaScript.

58

Fig. 42. Sandboxing Replay frame tree. The green box represents the webrecorder.io
domain and the red box represents the webrc.io domain

59

Fig. 43. Replay Isolation user view. The green box represents the necessarily archive
controlled portion of replay and the red box represents the replayed page

60

4.3.2 TEMPORAL JAILING

Even though an archive may solely employ replay isolation, the archived
JavaScript of the replayed page still has the ability to reach out to the live web
[55, 56]. When that happens, the sandbox the archive was attempting to create
through replay isolation and URL rewriting was escaped, thus causing loss of
control over replay on the part of the archive. This is undesirable by the archive only
using replay isolation but even more so on the part of the archive using sandboxed
replay. Because of this, the archive using sandboxed replay goes a step beyond
URL rewriting and replay isolation by its usage of temporal jailing.

Temporal jailing is the emulation of the JavaScript environment as it existed at
the original memento-datetime through client-side rewriting and archive navigational
control over the page. Temporal Jailing is in essence a total conversion of the
JavaScript environment (APIs) made available by the respective browser replaying
the page. Total conversion by necessity implies modification that can be broken down
into three categories based on the definition of Temporal Jailing.

The first category is emulation modifications. Emulation modifications ensure
the archived JavaScript, when replayed, cannot detect that the page is being replayed
and the behavior/function of the archived page persists post-archiving. Figure 44
displays a few ways one could detect if a page is contained in an iframe.

window !== window.top window.self !== window.top
window.parent.frames.length > 0 window.frameElement !== null
parent !== top self !== top

Fig. 44. Ways in which JavaScript may detect it is being replayed inside an iframe

JavaScript frameworks typically include these kinds of checks in order to generalize
the use cases for which they may be used or by the creators of web pages to ensure that
the page cannot be embedded in another website. Even a rudimentary search of the
most popular open source code repository hosting service GitHub (Figure 45) shows
use 91,063 results for self !== top, with the second and third results changing the
location of the page if the code detects it is within an iframe.

61

Fig. 45. Frame busting JavaScript Github search

Needless to say this is an unwanted behavior for archives using Sandboxed replay,
which is why the JavaScript APIs listed in Figure 44 must be overridden to only
indicate a page is in an iframe if it is a sub-page contained in an iframe within the
replayed page.

Similar to this is the emulation of the JavaScript date object, which if not
overridden through no fault of the archive, will necessarily expose the current date
and time the replayed page is being viewed on. This happens only because the
global JavaScript date object is tied to the system clock which the browser uses
in its creation. If the date object was not overridden, then archiving a page that
displays a specific message or provides a service at a specific date or time would

62

not be preserved simply due to the archive not ensuring the JavaScript date object
correctly reflects the replay time. Another aspect of the date object is that it is
commonly used in URI creation and requests made by the archived JavaScript. The
resources the archived page requests are tied to the specific URI-Rs made at archival
time. Unless the date object used in the creation of the URI-M correctly reflects
the original memento-datetime, the responses for requests made with the incorrect
datetime will receive a HTTP 404 response even though the archive does indeed
contain the resource requested but had indexed it to the URI created at archival time.

The final primary emulation modifications are the location exposing overrides.
Location exposing overrides required for emulation modifications also intersect
and are necessarily included in the next class of modifications, which are naviga-
tional modifications. Since the archive uses sandboxed replay which necessarily
separates the presentational components of replay from the replaying of the page
itself (replay isolation), handling JavaScript initiated navigation requires overriding
those APIs (Figure 46).

document.location window.location
window.open window.history
document.domain location

Fig. 46. Location exposing and navigation control JavaScript APIs

When overridden by the archive, the JavaScript APIs listed in Figure 46 would
no longer navigate the browser away from the archive, open a new window to an
unarchived page, or cause a run time error when attempting to change the domain of
the page [11], but rather when a navigation or history change happens, those events
would be reflected in both the replayed page and the archived-controlled portion of
Sandboxed replay. This means that the URIs used to cause navigation were rewritten
to URI-Ms (Figure 47 lines 570-574, 576-581, 585).

63

568 function WombatLocation (orig_loc) {
569 this._orig_loc = orig_loc;
570 this.replace = function (url) {
571 var new_url = rewrite_url(url);
572 var orig = extract_orig(new_url);
573 if (orig == this.href) { return orig; }
574 return this._orig_loc.replace(new_url);
575 }
576 this.assign = function (url) {
577 var new_url = rewrite_url(url);
578 var orig = extract_orig(new_url);
579 if (orig == this.href) { return orig; }
580 return this._orig_loc.assign(new_url);
581 }
582 this.reload = function () { return this._orig_loc.reload(); }
583 this.orig_getter = function (prop) { return this._orig_loc[prop]; }
584 this.orig_setter = function (prop, value) { this._orig_loc[prop] = value; }
585 init_loc_override(this, this.orig_setter, this.orig_getter);
586 set_loc(this, orig_loc.href);
587 this.toString = function () { return this.href; }
588 for (var prop in orig_loc) {
589 if (this.hasOwnProperty(prop)) { continue;}
590 if ((typeof orig_loc[prop]) != "function") {
591 this[prop] = orig_loc[prop];
592 }
593 }
594 }

Fig. 47. Replay Isolation location override implementation

The final class of modifications necessary for sandboxed replay is client-side
rewriting modifications. Client-side rewriting modifications are an extension
of archival linkage modifications and replay preserving modifications that
rather than relying on the rewriting of URL to be done by the archive server side,
directly override JavaScript web and DOM APIs [30, 12, 18] to provide URL rewrites
client side. This class of modification is an extension of archival linkage modifi-

cations and replay preserving modifications.

64

790 function init_ajax_rewrite () {
791 if (!$wbwindow.XMLHttpRequest || !$wbwindow.XMLHttpRequest.prototype ||

!$wbwindow.XMLHttpRequest.prototype.open) return;↪→
792 var orig = $wbwindow.XMLHttpRequest.prototype.open;
793 function open_rewritten (method, url, async, user, password) {
794 if (!this._no_rewrite) { url = rewrite_url(url); }
795 if (async != false) { async = true; }
796 result = orig.call(this, method, url, async, user, password);
797 if (!starts_with(url, "data:")) {
798 this.setRequestHeader('X-Pywb-Requested-With', 'XMLHttpRequest');
799 }
800 }
801 $wbwindow.XMLHttpRequest.prototype.open = open_rewritten;
802 override_prop_extract($wbwindow.XMLHttpRequest.prototype, "responseURL");
803 }
804 function init_fetch_rewrite () {
805 if (!$wbwindow.fetch) { return; }
806 var orig_fetch = $wbwindow.fetch;
807 $wbwindow.fetch = function (input, init_opts) {
808 if (typeof(input) === "string") {
809 input = rewrite_url(input);
810 } else if (typeof(input) === "object" && input.url) {
811 var new_url = rewrite_url(input.url);
812 if (new_url != input.url) {
813 input = new Request(new_url, input);
814 }
815 }
816 init_opts = init_opts || {};
817 init_opts["credentials"] = "include";
818 return orig_fetch.call(this, input, init_opts);
819 }
820 }

Fig. 48. Direct function overriding of JavaScript HTTP request APIs

65

2803 override_html_assign($wbwindow.HTMLElement, "innerHTML");
2804 override_html_assign($wbwindow.HTMLIFrameElement, "srcdoc");
2805 override_html_assign($wbwindow.HTMLStyleElement, "textContent");
2806 override_prop_extract($wbwindow.Document.prototype, "URL");
2807 override_prop_extract($wbwindow.Document.prototype, "documentURI");
2808 override_prop_extract($wbwindow.Node.prototype, "baseURI");
2809 override_attr_props();
2810 init_insertAdjacentHTML_override();
2811 override_iframe_content_access("contentWindow");
2812 override_iframe_content_access("contentDocument");
2813 override_func_first_arg_proxy_to_obj($wbwindow.MutationObserver, "observe");
2814 override_func_first_arg_proxy_to_obj($wbwindow.Node,

"compareDocumentPosition");↪→
2815 override_func_first_arg_proxy_to_obj($wbwindow.Node, "contains");
2816 override_func_first_arg_proxy_to_obj($wbwindow.Document, "createTreeWalker");
2817 override_func_this_proxy_to_obj($wbwindow, "getComputedStyle", $wbwindow);
2818 override_func_this_proxy_to_obj($wbwindow.EventTarget, "addEventListener");
2819 override_func_this_proxy_to_obj($wbwindow.EventTarget,

"removeEventListener");↪→
2820 override_frames_access($wbwindow);
2821 if (!wb_opts.skip_setAttribute) {
2822 init_setAttribute_override();
2823 init_getAttribute_override();
2824 }
2825 init_svg_image_overrides();
2826 init_attr_overrides();
2827 init_cookies_override();
2828 init_createElementNS_fix();
2829 if (!wb_opts.skip_dom) { init_dom_override();}
2830 init_registerPH_override();
2831 init_beacon_override();
2832 }
2833 init_document_obj_proxy($wbwindow.document);

Fig. 49. Direct element attribute and content rewriting

4.4 NON-SANDBOXING REPLAY

Non-sandboxing replay is the style of replay that does not separate the replayed
memento from the archive-controlled portion of replay. Unlike sandboxing replay, the
contents of the replayed memento and the archive added portion of replay exist side by
side and come from the same domain. Control over the replayed memento is achieved
through archival linkage modifications only. To demonstrate this, consider a memento
of the same page used to illustrate sandboxing replay http://2016.makemepulse.com/
on 2017-10-22T01:59:01Z when replayed from the Internet Archive (Figure 50).

66

Fig. 50. Example of non-sandboxing replay. The replayed page’s contents are outlined
in red. https://web.archive.org/web/20171022015901/http://2016.makemepu
lse.com/

Figure 50 displays how the Internet Archive is inserting its own markup (green
boxes) into the HTML belonging to the replayed memento (red box). The markup
inserted in the HTML of the replayed memento exists only to provide the banner seen
in Figure 52 (green box), which is displayed over the contents of the replayed memento
(red box). To better illustrate how the archive-injected assets exist alongside the
replayed mementos consider Figure 51, which displays the frame tree for the replayed
memento. The frame tree for non-sandboxing replay (Figure 51) unlike the frame
tree associated with sandboxing replay (Figure 42), consists of a single frame, the
top frame.

https://web.archive.org/web/20171022015901/http://2016.makemepulse.com/
https://web.archive.org/web/20171022015901/http://2016.makemepulse.com/

67

The top frame for non-sandboxing replay acts as both the frame containing the
non-replayed archived added portion of replay and the frame where replay actually
occurs (as is the case in sandboxing replay). The non-replayed archived added portion
(green boxes) are not isolated from the replayed memento (red boxes) as seen in
Figure 51. This leaves the archive-injected markup vulnerable to either direct or
indirect tampering with by the replayed memento simply because they exist in the
same frame (origin), web.archive.org. For example, the CSS definitions contained
within mementos of http://example.com when replayed from the Internet Archive
expose the existence of the injected banner’s container div (Figure 54).

The markup for the Internet Archive’s injected banners, seen in the green box
of Figure 55, consists of a wrapper div and the markup for the banner itself. The
wrapper div is used by the Internet Archive to allow the banner to fill the width of
the page even though they are fixing the actual banner to the very top of the page.
The wrapper div also includes the inline style definition “display:block”, giving the
wrapper only the width necessary to “float” the banner to its fixed top position and
have it flow naturally with the page. Because the mementos of http://example.com
contain a style definition applied to all div elements contained in the page, red box
in Figure 55, the wrapper div becomes visible by shifting the contents of mementos,
downwards as highlighted by the red box of Figure 54. Due to non-sandboxing replay’s
lack of isolation of the necessarily archived controlled portion of replay (banner) from
the replayed mementos, the mementos of http://example.com do not replay as they
existed on the live web (Figure 53).

68

Fig. 51. Non-Sandboxing replay frame tree. https://web.archive.org/web/
20171022015901/http://2016.makemepulse.com/

https://web.archive.org/web/20171022015901/http://2016.makemepulse.com/
https://web.archive.org/web/20171022015901/http://2016.makemepulse.com/

69

Fig. 52. Non-Sandboxing replay user view. The green box represents the necessarily
archive control portion of replay and the red box represents the replayed page

70

Fig. 53. http://example.com as it exists on the live web

Fig. 54. Internet Archive’s injected banners vulnerability to a memento embedded
CSS due to non-sandboxing replay

http://example.com

71

Fig. 55. Internet Archive’s injected banners vulnerability (Figure 54), offending div

and memento’s embedded CSS

4.5 ESSENCE PRESERVATION

Essence Preservation preserves only what the web page looked like at preservation
time. This preservation process typically results in an image, PDF, or video [67] of
the web page being created. The news homepage archiving platform, PastPages2,
demonstrates this (Figure 56).
2http://www.pastpages.org

http://www.pastpages.org

72

Fig. 56. PastPages preserving news sites essence through images

PastPages was created by Ben Welsh, editor of the Los Angeles Times Data Desk,
to take screenshots of the home pages for 121 news site once an hour so that the
changes they undergo can be studied. The original contents of those homepages
(e.g., HTML and embedded resources) are otherwise unavailable in this archive. The
images saved by this service only prove that the home pages for 121 news sites did in
fact exist and what was captured in the screenshot was displayed to the tool or entity
that took the screenshot, i.e. their essence. The other aspect of Essence Preservation
is Archival Caricaturization.

4.5.1 ARCHIVAL CARICATURIZATION

Archival Caricaturization is a style of preservation that does not preserve the
web page faithfully, as it originally was at some point of time, but rather focuses on
only preserving what it looked like at some point of time. Caricature is defined as

73

“Exaggeration by means of often ludicrous distortion of parts or characteristics”3

and is the pivotal distinction for this style of preservation. An archive that preserves
through Caricature is one that applies a derivative transformation to the web page’s
original markup such that it conforms with the presentational style of the archive
and is unrecognizable from the original. An archive may choose to keep the original
appearance of the web page at the point in time it was preserved or may choose
only to preserve certain aspects of the web page like its text, images and or video,
presenting them in a medium differing from the original. Ultimately, one cannot
retrieve the original web page and its embedded resources at archival time from an
archive using this style of preservation.

4.5.2 ARCHIVAL CARICATURIZATION REPLAY

In order to understand Archival Caricaturization replay, consider the example
in Figure 57 that demonstrates three different ways to make a div have a green
background.
3https://www.merriam-webster.com/dictionary/caricature

https://www.merriam-webster.com/dictionary/caricature

74

1 <html>
2 <head>
3 <meta name="seo" content="index me!"/>
4 <style>
5 .greenBG {
6 background: green;
7 height: 25px;
8 width: 25px;
9 margin: 5px;

10 }
11 #gbg::before {
12 content: "";
13 background: green;
14 display: block;
15 height: 25px;
16 width: 25px;
17 margin: 5px;
18 }
19 </style>
20 </head>
21 <body>
22 <div style="background: green; height: 25px; width: 25px; margin:5px;"></div>
23 <div id="gbg"></div>
24 <div class="greenBG"></div>
25 </body>
26 </html>

Fig. 57. Example http://cs.odu.edu/∼jberlin/originalThreeGreen.html

The first div in Figure 57 (line 22) has the green background definition inline,
via the style attribute of the element. The second div (line 23) relies on the CSS
id selector “#gbg” with the pseudo-element “::before” (lines 11-18) to give it the
green background. Note that pseudo-elements are considered virtual markup and
only become realized for a page after a browser has interpreted a CSS file or style
tags contents. The third and final div (line 24) receives its green background through
the usage of the CSS class “greenBG”. The visual representation of the example from
Figure 57 is shown in Figure 58a.

http://cs.odu.edu/~jberlin/originalThreeGreen.html

75

(a) Toy Example Rendered In Google Chrome

(b) Toy Example Archived Using Caricaturization Rendered In Google Chrome

Fig. 58. Simple example of Archival Caricaturization preserving exactly how the page
existed. Rendering of HTML shown in Figure 57.

Consider the toy example after again being archived using Archival Caricaturization
(Figure 59) and its rendering (Figure 58b). The example’s original markup (Figure 57,
lines 1-26) has been replaced completely and is represented by a div with the class
html1 (Figure 59, lines 14-21). The head tag and its content no longer exist, whereas,
the body tag is represented by another div with the class body (lines 16-22). The
first green box, line 17, almost exists as it did in the original (Figure 57 lines 22) with
the additional style definition “text-align: left;” added to it as do the remaining two
green boxes (Figure 57 lines 23 and 24).

76

Fig. 59. Transformation of HTML shown in Figure 57 as archived through caricatur-
ization. http://archive.is/t0T8m

To further illustrate Archival Caricaturization, consider Figure 60, with an anno-
tated comparison of an article from http://nocleansinging.com on 2017-05-15 to
an archived copy of the very same article as preserved by archive.is. The orange “1”
annotation with arrows points out two identifiers for Essence Preservation, the first
is Identity Masking. Identity Masking refers to the way an archive chooses to identify
the web page and its dependent resources post-archival. Archives using Identity
Masking change the filenames of the web page and it’s dependent resources to a hash
of its contents or a hash seeded by some aspect of the archival process that uniquely

http://archive.is/t0T8m
http://nocleansinging.com

77

identifies the web page. The URI-M of the memento4 when replayed in archive.is
was transformed into http://archive.is/ZV75b. The second identifier is that the
page has been condensed style wise to fit into the presentational format of archive.is,
an Archival Caricaturization. The yellow “2” annotation with arrows points out a
third identifier of Essence Preservation, which is lack of JavaScript preservation. The
search box included with the page as seen in the live web version has the JavaScript
added text “Powered By Google”, whereas the archive.is memento does not because
it did not preserve the page’s JavaScript. Thus, it cannot be executed on replay.

1
2

Fig. 60. archive.is caricaturization of nocleansinging.com, the live web version is on
the left, and the memento is on the right

The Archival Caricaturization done by archive.is can also be seen in further detail
when considering the URL of http://heavyblogisheavy.comas preserved by archive.is
(Figures 61, 62, 63 and 64).

The “1” annotation in Figure 61 shows the lack of JavaScript execution and
preservation, likewise for Figure 62 annotations “2” and “4”. The “2” annotation
in Figure 61 shows how archive.is’ inlining of the original page’s stylesheets did not
preserve the visual aesthetics of text even when no zoom has been applied, but the
browsers window takes up only 50% of the total screen size.
4http://archive.today/2017.05.15-234504/http://www.nocleansinging.com/2017/05/15/seen-and-
heard-origin-the-lurking-fear-suffocation-pathology-broken-hope/

http://archive.is/ZV75b

78

Fig. 61. heavyblogisheavy.com vs. archive.is no zoom

Figure 62 shows the same comparison but at zoom level 50%. At this zoom level
we can see another effect of the Archival Caricaturization applied to the page by
archive.is, which is that the nav bar of heavyblogisheavy.com is not displayed, shown
in annotation “1”. The text and image placement did not reflow when zoomed out,
shown in annotation “3”. Finally, there is another instance of loss of content from the
original page. This is due to the lack of JavaScript archival, with the page missing
the post tags highlighted by annotation “4”. Even at zoom level 90% (Figure 63),
we see the same behavior as in Figure 62. The navigation bar is still not displayed,
shown in annotation “1” and the text plus images do not reflow based on zoom level,
shown in annotations “3” and “4”.

79

Fig. 62. heavyblogisheavy.com vs. archive.is zoom 50%

Fig. 63. heavyblogisheavy.com vs. archive.is zoom 90%

80

Figure 64 demonstrates the derivative transformation applied to the original
resources by archive.is, which is another indication of Archival Caricaturization and
Essence Preservation. It also shows what happened to the nav bar of heavyblo-
gisheavy.com. The left half of Figure 64 is the page on the live web with the developer
tools open, showing the class names applied to original markup. The right half of Fig-
ure 64 shows the translation of the original resource by archive.is. As shown archive.is
added additional tags to the original markup to account for the “pseudo-elements”
that are added through CSS only (the orange and dark blue arrows) and stripped
away all original identifying markup. The red box shows the added “display: none”
CSS style to the transformation of the header element. Even though the derivative
transformation of the original markup preserved the essence of the page, it negatively
impacted an essential part of the page.

An even more simple example of this can been seen when comparing5 (Figure 65)
to a memento of the page on archive.is6 (Figure 66). The live web page uses Custom
Elements, which are elements that are user defined only, powered through JavaScript,
and have no style applied to them. As demonstrated earlier (Figure 60), archive.is
neither preserves the JavaScript of the page nor does it execute the JavaScript on
replay. But when replayed from archive.is (Figure 66) we see a clear view into the
process for the derivative markup transformation applied by archive.is. As seen in
Figure 66, archive.is did not know how to remove and replace the custom elements
used by the original page, so they were left in. We also see here that archive.is
does indeed add style definitions to tags that did not exist in the original, with each
custom tag having the attribute style with value “text-align:left;” added. This
style definition existed nowhere in the original as shown in Figure 65, thus further
demonstrating that archive.is employs Archival Caricaturization.
5http://wsdl-docker.cs.odu.edu:8080/tests/acidv1CustomElements
6http://archive.is/yCsqy

http://wsdl-docker.cs.odu.edu:8080/tests/acidv1CustomElements
http://archive.is/yCsqy

81

Fi
g.

64
.
ar
ch
iv
e.
is

ad
di
tio

n
of

di
sp
la
y:
no

ne
to

he
av

yb
lo
gi
sh
ea
vy
.c
om

82

(a) Page using custom elements as it existed on the live web, viewed using the Google
Chrome Browser as it existed on the live web. http://wsdl-docker.cs.odu.edu:8080/
tests/acidv1CustomElements

http://wsdl-docker.cs.odu.edu:8080/tests/acidv1CustomElements
http://wsdl-docker.cs.odu.edu:8080/tests/acidv1CustomElements

83

(b) http://wsdl-docker.cs.odu.edu:8080/tests/acidv1CustomElements as it existed
on the live web, elements pane of the developers tools of the Google Chrome browser

Fig. 65. Page using JavaScript powered custom HTML elements as the primary
markup. http://wsdl-docker.cs.odu.edu:8080/tests/acidv1CustomElements

http://wsdl-docker.cs.odu.edu:8080/tests/acidv1CustomElements
http://wsdl-docker.cs.odu.edu:8080/tests/acidv1CustomElements

84

Fig. 66. Page using JavaScript powered custom HTML elements as the primary
markup as replayed from archive.is demonstrating the inability of archive.is to correctly
preserve the page through caricature. http://archive.is/yCsqy

http://archive.is/yCsqy

85

4.6 SUMMARY

In this chapter, we classified the styles of replay and the modifications made to
mementos for two archives using the “Wayback” model of replay, namely the Internet
Archive and Webrecorder, and two archives using the “Non-Wayback” model, namely
PastPages and archive.is.

Table 6 displays the terminology created for describing the replay styles used by
the archives using the “Wayback” model. Each term listed succinctly describes the two
variants of “Wayback” replay, namely Sandboxed Replay and Non-Sandboxing

Replay. We showed how sandboxed replay effectively provides increased replay
security in comparison to non-sandboxed replay, which is susceptible to inadvertent
“attacks” by the embedded resources of the memento. This happens because non-
sandboxed replay does not separate the necessarily archive controlled portion of replay
(e.g., banner) from the replayed memento.

Table 6
Terminology for describing the “Wayback” model of replay

Term Definition Example

Sandboxed Replay Style of replay that separates
the replayed memento from the
archive-controlled portion of the
page through replay isolation

Webrecorder

Replay Isolation Usage of an iframe to the sand-
box the replayed memento, re-
played from a different domain,
from the archive controlled por-
tion of replay

Non-Sandboxing

Replay

Style of replay that does not sep-
arate the replayed memento from
the archive-controlled portion of
replay

Internet Archive

Table 7 displays the terminology created for describing the modifications made

86

to mementos for facilitating replay by the “Wayback” model. Archives using the
“Wayback” model of replay, must ensure Archival Linkage of the URI-Rs found
in memento and its embedded resources so that they no longer link to the live web
but back to the archive. Similarly, archives must perform Replay Preserving

modification in order to negate intended semantics of specific HTML element and
attribute pairs to ensure that replay of the memento is possible. We showed how
Content-Security-Policy delivering meta tags, used by pages on the live web to
defend against malicious content injection, can prevent the archive control over replay
unless the tag was modified by the archive. We then described at a high level the
modifications made to the JavaScript environment of the browser by client-side
rewriting called Temporal Jailing.

Table 7
Terminology describing the modifications made to mementos to facilitate replay

using the “Wayback” model

Term Definition

Archival Linkage Modifications made by the archive to a page
and its embedded resources in order to serve
(replay) them from the archive

Replay Preserving Modifications made on the part of an archive
to negate the intended semantics of specific
HTML element and attribute pairs

Temporal Jailing The emulation of the JavaScript environment
as it existed at the original memento-datetime
through client-side rewriting

Lastly, we created terminology for describing both the preservation and replay of
web pages using the “Non-Wayback” model (Table 8). The “Non-Wayback” model
has two primary means for preservation and replaying web pages, namely Essence

Preservation and Archival Caricaturization. Essence preservation focuses on
capturing only what the web page looked like at archival time and the result of
preservation is an image, PDF, or video. Archival caricaturization, an extension of

87

essence preservation, applies a transformation to the page and its embedded resources
during preservation such that the archived representation is radically different from
the original representations. The transformation process, as shown, includes Identity
Masking, which masks the identity (URIs and filenames) of the page and its embedded
resources. The radically transformed representations are then made available for
replay.

Understanding the replay process and the modifications made to mementos by web
archives in order to facilitate replay are important concepts required for understanding
the remainder of this thesis. In the next chapter, we discuss in detail how to securely
replay archived JavaScript and the modifications made to JavaScript environment of
the browser by temporal jailing.

Table 8
Terminology for describing the replay of and modifications made to mementos by the

“Non-Wayback” model

Term Definition Example

Essence Preservation Preserves only what the web page
looked like at preservation and typically
results in an image, PDF, or video of
web page being created

PastPages

Archival

Caricaturization

The style of preservation and replay
that does not preserve or replay the web
page faithfully, as it originally was, but
rather focuses on only preserving what
it looked like at some point of time

archive.is

Identity Masking Changes made to the URI-M of the me-
mento and its dependent resources such
that the original filenames and URI-Rs
do not persist post archival but rather
are transformed to an archive dependent
identifier

88

CHAPTER 5

JAVASCRIPT FOR THE PRESERVATION AND REPLAY

OF THE MODERN WEB

In Chapter 4, we classified the modifications made to a page by an archive to facilitate
replay and outlined the differing styles of replay. Also in Chapter 4 we identified that
web archives relying solely on server-side rewriting miss URLs used in a manner not
accounted for by the archive or involving client-side execution of JavaScript by the
browser, resulting in leakage from the live web and/or the inability to replay a page
due to the preserved JavaScript performing an action not permissible from within the
archive. Notable failures in replay due to the lack of JavaScript overrides/rewriting
are the homepage of CNN [11] and user pages found on mendeley.com [15].

The current solution for overcoming the inability of server-side rewriting to rewrite
URLs used in a manner not accounted for by the archive or involving client-side
execution of JavaScript is the client-side rewriting library employed by Pywb and
Webrecorder Wombat. At its core, Wombat performs the same rewriting done server-
side with the addition of targeted JavaScript API overrides in order to rewrite the
URLs they operate on. The targeted aspect of Wombat’s rewriting is what makes
it an effective addition to server-side rewriting but with a singular downside, it is a
handcrafted library specifically tailored for Pywb and Webrecorder.

Other archives that wish to employ client-side rewriting must implement their own
version of the library. But that would only further confirm the boutique nature of
client-side rewriting libraries rather than being an aid towards providing a standard
general solution for the creation of a client-side rewriting library. The current reasoning
of why a general solution for creating client-side rewriting libraries does not exist
is that the JavaScript web and DOM APIs provided by the browser change rapidly
without a central standard from which to base the solution as is the case for server-side
rewriting.

To some extent, the current assumption is correct but in reality there does exist
a central standard(s) from which a general solution can be derived. Consider the
following excerpts from the HTML specification [12]:

89

This specification uses the term document to refer to any use of HTML,
. . . , as well as to fully-fledged interactive applications. The term is used
to refer both to Document objects and their descendant DOM trees, and
to serialized byte streams using the HTML syntax or the XML syntax,
depending on context
. . .
User agents that support scripting must also be conforming implementa-
tions of the IDL fragments in this specification, as described in the Web
IDL specification

The first excerpt, in short, states that even the most reactive web applications and
the JavaScript interfaces for interacting with the document (DOM) are governed by
the HTML specification. This is confirmed by the second excerpt that states that user
agents supporting web scripting (JavaScript) must abide by the Web IDL fragments
contained in the specification. From these two excerpts, we know that each browser,
regardless of the underlying implementation of JavaScript, their JavaScript web and
DOM APIs conform to the Web IDL fragments provided by the HTML and DOM
[30] specifications. Furthermore, we know that any additional specifications linked to
from the HTML and or DOM specifications, namely CSS and fetch [68], will provide
Web IDL definitions for their corresponding JavaScript API if one exists. Using
this knowledge we can derive a generalized and standard solution for the creation of
client-side rewriting.

5.1 WEB IDL

Web Interface Design Language (Web IDL) was created by the W3C to “describe
interfaces intended to be implemented in web browser”, “allow the behavior of common
script objects in the web platform to be specified more readily”, and “provide how
interfaces described with Web IDL correspond to constructs within ECMAScript
execution environments” [18]. Web IDL specifies the underlying behavior (browser
implementation) and shape of the JavaScript web and DOM APIs through five core
constructs: interface, typedef, enum, dictionary, and callback (Figure 67).

Web IDL uses interfaces to describe how the actual JavaScript [31] objects im-
plementing the interface are to behave, in addition to how to mutate the object’s
state and invoke the behavior described by the interface (Figure 67, line 1-8). The
primary members of an interface are attributes (line 4), describing the exposed

90

state of the implementing object, and operations (Figure 67, line 7), which describe
behaviors (methods) that can be invoked on the object [18].

1 [extended_attributes]

2 interface identifier : identifier_of_inherited_interface {

3 [extended_attributes]

4 /* special_keywords */ attribute type identifier;

5

6 [extended_attributes]

7 /* special_keywords */ return_type identifier([extended_attributes] type identifier);

8 };

9

10 interface_identifier implements identifier_of_implemented_interface;

11

12 partial interface identifier_of_existing_interface { /* interface_members */ };

13

14 callback interface identifier { /* interface_members */ };

15

16 typedef type identifier;

17

18 enum identifier { "value 1", "..." ,"value n" };

19

20 dictionary identifier { type identifier = "value"; };

21

22 callback identifier = return_type (/* arguments... */);

Fig. 67. Web IDL syntax

The extended attributes of an interface, attribute, operation, or an argument
of an operation are annotations used to describe how language bindings will handle
those constructs (Figure 67, lines 1, 3, and 6-7). Extended attributes can indicate
where the interface is exposed, if it has a named constructor or if it cannot be
redefined (Unforgeable) (Figure 68, lines 1, 4). Special keywords are used to denote,
for example if an attribute is read-only or if an operation is used as the underlying
objects stringifier (Figure 67, lines 4 and 7).

1 [Exposed=Window,NamedConstructor=Audio(DOMString src)]

2 interface HTMLAudioElement : HTMLMediaElement {};

3

4 [Unforgeable]

5 interface Location {};

6

7 typedef (Request or USVString) RequestInfo;

Fig. 68. Web IDL extended attributes and typedefs

91

Web IDL expresses the composition of an interface using inheritance, imple-
ments, and partial interfaces (Figure 67, lines 2, 10, and 12). If an interface
inherits from or implements another interface, the inheriting or implementing
interface also contain the members of the inherited or implemented interface.
Whereas partial interfaces (Figure 67, line 12) are used as an “editorial aid”,
allowing the definition of an existing interface to be separated from the main
definition but are considered members of the original interface [18]. Callback
interfaces, on the other hand (Figure 67 line 14), are used to describe the shape of
a user created argument supplied to an operation of an interface.

Typedefs in Web IDL are used to declare a new name for a type or a union
of many types (Figure 67, line 16 and Figure 68, line 7) and are only a naming
shorthand for referencing the type(s). The remaining constructs of Web IDL being
used to express a type for valid predefined strings are an enum, fixed key value pairs,
a dictionary, and a callback, which is a named function type (Figure 67, lines
18-22).

5.2 WEB IDL JAVASCRIPT MAPPING

Each of the constructs defined by Web IDL have their own mapping to the
JavaScript execution environment. For the purpose of this thesis we will only go
into detail into how the Web IDL interface type maps to the JavaScript execution
environment and any additional information necessary for the creation of a client-side
rewriting library based on a supplied set of Web IDL definitions (fragments). The Web
IDL specification states that each for JavaScript implementation (web browser) for a
set of Web IDL fragments, there will exist a corresponding JavaScript object and all
interfaces the implementation supports will be exposed on the global environment
object [18].

Interfaces which are not callback interfaces or declared with the NoInter-
faceObject extended attribute (Figure 69, line 8) are represented by an interface
object exposed on the global environment object as a named property and have a
prototype object [31, 18]. The name of the property is the interface’s identifier
with a value consisting of its static and constant members called an interface ob-
ject that is both writable and configurable on the global object unless it was defined
as an attribute of the global object with the Unforgeable extended attribute or is
the global object itself [18] (Figure 69 lines 1,4-5).

92

1 [Unforgeable]

2 interface Location {};

3

4 interface Window : EventTarget {

5 [Unforgeable] readonly attribute Document document;

6 };

7

8 [NoInterfaceObject]

9 interface URLUtils {};

global object

Fig. 69. Unforgeable and NoInterfaceObject extended attributes

Unlike the restrictions placed on the exposed interface objects, a prototype
object exists for each implemented interface and is exposed on the global environ-
ment object regardless of if the interface was defined with the NoInterfaceObject
extended attribute. Each attribute and operation exists on the prototype object
as a named property whose name is the identifier of the attribute or operation
with the following additional properties. Attributes are defined to be configurable

unless the attribute was defined with the Unforagable extend attribute and have a
getter and setter function. Likewise, operations are defined to be configurable unless
the operation was defined with the Unforagable extend attribute except they do not
have a getter or setter. In order to avoid confusion when speaking about interface
objects and prototype objects, consider the representation for HTML anchor tags
in both JavaScript (Figure 70) and Web IDL (Figure 71).

When the Web IDL specification states that an interface has both an inter-
face object and an interface prototype object, it is referring to lines 1 and
2 of Figure 70. The interface object exists on the global JavaScript environment
object (window) as a named property, its IDL interface identifier (Figure 70, line 1).
The prototype object for the interface exists as the prototype property on the
interface object (Figure 70, line 4). When you create a new HTMLAnchorElement
(Figure 70, line 4) you receive a new instance (a prototype) of the interface object.
Through this object, you can view or mutate the new instance’s state via setting or
getting its properties (Figure 70, lines 5 and 6).

93

Fig. 70. Web IDL interface to ECMAScript mapping

Now consider the actual Web IDL fragment for the HTMLAnchorElement, seen
with annotations in Figure 71. The definition for the HTMLAnchorElement has all the
attributes defined for the anchor tag in the HTML specification except for the href

attribute, found on the URLUtils interface which HTMLAnchorElement implements
(line 16). Because the URLUtils interface was defined with the NoInterfaceObject
extended attributed, it will not have an interface object, only an prototype
object, whereas HTMLAnchorElement was not defined with the NoIntefaceObject
extended attribute and has both. Because HTMLAnchorElement implements URLU-
tils, the attributes and operations on the URLUtils prototype object are also
on HTMLAnchorElements. This is the same for the HTMLElements attribute and
operations, as it is extended (inherited) by HTMLAnchorElement.

94

1 interface HTMLAnchorElement : HTMLElement {

2 [Reflect] attribute DOMString target;

3 [Reflect] attribute DOMString download;

4 [Reflect] attribute DOMString ping;

5 [Reflect] attribute DOMString rel;

6 [Reflect] attribute DOMString hreflang;

7 [Reflect] attribute DOMString type;

8 [Reflect] attribute DOMString referrerpolicy;

9 [Reflect] attribute DOMString text;

10 [Reflect] attribute DOMString coords;

11 [Reflect] attribute DOMString charset;

12 [Reflect] attribute DOMString name;

13 [Reflect] attribute DOMString rev;

14 [Reflect] attribute DOMString shape;

15 };

16 HTMLAnchorElement implements URLUtils;

17

18 [NoInterfaceObject]

19 interface URLUtils {

20 attribute USVString href;

21 [NotEnumerable, ImplementedAs=href] USVString toString();

22 readonly attribute USVString origin;

23 attribute USVString protocol;

24 attribute USVString username;

25 attribute USVString password;

26 attribute USVString host;

27 attribute USVString hostname;

28 attribute USVString port;

29 attribute USVString pathname;

30 attribute USVString search;

31 attribute USVString hash;

32 };

Inherited prototype object

Prototype object of
the interface object.

Implemented interface’s
prototype inherited

Fig. 71. HTMLAnchorElement.idl

5.3 AUTO-GENERATING A CLIENT-SIDE REWRITER

The fundamental goal of URL rewriting is to ensure that every URL found in or
operated on by the archived resources points to the archive at a specific memento-
datetime. Server-side rewriting achieves this goal for archived HTML and CSS
because the locations of those URLs are well-defined by their respective specifications.
Albeit, server-side performs additional rewriting beyond those well-known locations to
account for the capabilities of JavaScript. But JavaScript can only retrieve the value

95

of arbitrary attributes, introduce additional HTML into the document, modify the
existing HTML of the document, and make HTTP requests using the APIs described
by the Web IDL fragments included or linked to by the specifications that are the basis
for HTML and CSS rewriting. It is from those Web IDL fragments in combination
with the description of how Web IDL maps to the JavaScript environment that the
auto-generation of a client-side rewriting library is possible.

5.3.1 IDENTIFYING WEB IDL INTERFACES

Fundamentally both client-side and sever-side rewriting operate under the same
constraints, that is, both cannot rewrite URLs unless they know where to look.
Server-side rewriting looks for URLs in HTML based off the tag and attribute name
(Table 9). Similarly, rewriting CSS looks for URLs contained in the import or url
keywords (Figure 72). Client-side rewriting, on the other hand, must be able to
apply overrides for well-known URL identifiers that are found within the constructs
of Web IDL. The base set of identifiers required to correctly determine which Web
IDL interfaces are needed to generate a complete client-side rewriting library come
from the existing “identifiers” used by server-side HTML and CSS rewriting.

96

Table 9
HTML Element Attributes With Rewrite Modifier From Pywb

Tag Attribute Rewrite Modifier

a, area href None

audio, embed

input, source src oe_

track, video

audio, video poster im_

iframe src if_

frame src fr_

base href mp_

form action mp_

img src im_

srcset im_

link href cs_, mp_, None

meta content mp_

object data oe_

script src js_

source srcset oe_

* style mp_, im_

As seen in Table 9, server-side rewriting of HTML identifies a tag to be rewritten
using the tag and attribute name. Note that the rewrite modifiers displayed in
Table 9 differ from the modifiers used by OpenWayback (Figure 26). We chose to
use the rewrite modifiers from Pywb because they follow the convention set by the
Internet Archive’s Wayback Machine. But as shown by Figures 68 and 71, the naming
conventions for HTML element interfaces in Web IDL do not match the actual tag
name. Rather, the match is found when considering the identifiers of attributes that
are the same as the attribute names used by server-side rewriting. This provides

97

us with a total of seven well-known URL identifiers (namely: action, content, data,
href, poster, src, srcset) for identifying the HTML element interfaces as described in
Web IDL. The style attribute, the eighth identifier, unlike the other seven attributes,
also doubles as an HTML element whose text content contains the full set of allowed
CSS style definitions. Because the style attribute also doubles as a tag, we know two
things: the generated client-side rewriter must be able to rewrite URLs found in the
style definitions of the style attribute found on arbitrary elements and within the text
contents of a style tag when modified via JavaScript (Figure 72).

Each of the style definitions seen within the style attribute (Figure 72, lines
1-5) are considered properties of a CSS declaration block that is exposed as the
Web IDL interface CSSStyleDeclaration with two ways of mutating the state of
the attribute [69, 31, 18, 30]. The first mutation is when the attribute is set
directly, i.e. elem.style = '...', causing the plain text string to be converted
into a CSSStyleDeclaration whose properties are the style declarations contained
within the string. The conversion algorithm used for the first mutation is the
same one used when mutating the text contents of a style tag (Figure 72, lines
6-10). The second means of mutation is by direct modification of a property of the
CSSStyleDeclarations via one of its identifiers, i.e. elem.style.width = '....'.

Fig. 72. CSS style properties that may contain URLs and how URLs may exist in
CSS style definitions found in a style tag

Borrowing once more from server-side rewriting, we know that when rewriting
CSS, the URLs to be rewritten can only be found in import and url keywords and,
when considering Figure 72, we find the totality of identifiers for client-side rewriting
of CSS. Each of the five elements with the style attribute found in Figure 72 contain
one of the five CSSStyleDeclaration attribute identifiers whose value may contain a

98

URL but with a minor caveat. The caveat for the CSSStyleDeclaration attributes is
when accessed directly via the style attribute the property names are camel-case but
attributes may be set or retrieved using both camel-case and actual style declaration
name via the APIs provided by the CSSStyleDeclaration (Figure 73) [69].

Also, found in Figure 73 are two additional identifiers for the CSS rewriting
component, setProperty and cssText (lines 2 and 3). The Web IDL interface
for the style tag, HTMLStyleElement, does not contain a text content attribute
implying, it must be found on an inherited or implemented interface.

1 interface CSSStyleDeclaration {

2 void setProperty(DOMString property, DOMString value, optional DOMString priority);

3 attribute DOMString cssText;

4 getter (DOMString or float) (DOMString name);

5 getter DOMString item(unsigned long index);

6 setter void (DOMString property, DOMString? propertyValue);

7 };

8

9 interface HTMLStyleElement : HTMLElement {};

10

11 interface HTMLElement : Element {

12 attribute CSSStyleDeclaration style;

13 };

14

15 interface Element : Node {};

16

17 interface Node : EventTarget {

18 attribute DOMString? textContent;

19 };

Every HTMLElement can have a style attribute

Can only access or mutate URLs in style
definitions from HTMLStyleElement

Inheritance Hierarchy
Node

Element

HTMLElement

HTMLStyleElement

Fig. 73. CSS in Web IDL

That is indeed the case when considering the inheritance hierarchy of the interface
representing the style tag, HTMLStyleElement. Hierarchy annotated to the right of
the interfaces is shown in Figure 73 lines 9-19. Because the Node interface exposes the
text contents of every Node as the textContent attribute and the HTMLStyleElements
inheritance hierarchy includes Node as the topmost parent interface, we know that
the textContent attribute is also an attribute of HTMLStyleElement. Likewise, we
know that every interface inheriting from HTMLElements has a style attribute that
is a CSSStyleDeclaration. Since the textContent attribute of all Node inheriting
interfaces can only be used to introduce potentially un-rewriting URLs using the
attribute on HTMLStyleElement’s prototype object, we need to only override the
access and modification of it on the HTMLStyleElement. To demonstrate this, consider
the page http://www.cs.odu.edu/∼jberlin/simpleStyle.html, seen in Figure 74

http://www.cs.odu.edu/~jberlin/simpleStyle.html

99

which provides viewers of the page the ability to dynamically change the textContent

attribute of an existing style tag.

Fig. 74. Dynamic changes to the textContent attribute of a style tag to load URLs
live web. http://www.cs.odu.edu/∼jberlin/simpleStyle.html

The page provides its viewers with the ability to edit a fake css file named
awesomeCSS.css via a faux code editor to dynamically change the style of an element.
When a viewer changes the text contents of the editor, which is a textarea element
[12], a small bit of JavaScript (seen below the styled element) takes its value and sets
the textContent attribute of a style tag. As seen in Figure 74, when the background-

image style definition (Figure 72, line 1) was added with the value
url("https://media.giphy.com/media/l4KhKG7h3QSCn7gUU/giphy.gif");
and the JavaScript updated the textContent attribute of the style tag (theStyle),
the browser initiated a resource fetch and the gif was displayed as the background
of the #changeMe element. But the behavior of the page does not persist when

http://www.cs.odu.edu/~jberlin/simpleStyle.html

100

archived using the save page now feature of the Wayback Machine and then replayed
(Figure 75). This is to be expected as the Wayback Machine uses a content security
policy to block un-rewritten URLs from being loaded by the page. However, this is
not the expected behavior for pages which access and mutate the style attribute or
any attribute of HTML elements that can be used to initiate browser resource fetches
using an identifier(s) from the next set of well-known identifiers (Figure 76).

Fig. 75. Dynamic changes to the textContent attribute of a style tag to load URLs
archived. http://web.archive.org/web/20180224044958/http://www.cs.odu.e
du/∼jberlin/simpleStyle.html

http://web.archive.org/web/20180224044958/http://www.cs.odu.edu/~jberlin/simpleStyle.html
http://web.archive.org/web/20180224044958/http://www.cs.odu.edu/~jberlin/simpleStyle.html

101

1 interface Attr : Node {

2 readonly attribute DOMString name;

3 attribute DOMString value;

4 attribute DOMString nodeValue;

5 };

6

7 interface Element : Node {

8 attribute DOMString innerHTML;

9 attribute DOMString outerHTML;

10 void insertAdjacentHTML(DOMString position, DOMString text);

11 Element insertAdjacentElement(DOMString where, Element element);

12

13 DOMString? getAttribute(DOMString name);

14 void setAttribute(DOMString name, DOMString value);

15

16 Attr? getAttributeNode(DOMString name);

17 Attr? setAttributeNode(Attr attr);

18 };

Attributes (Attr) are Nodes

Well-known markup accessing
and mutation identifiers

Well-known attribute accessing
and mutation identifiers

Fig. 76. Well-known property mutating identifiers

The attributes of HTML elements are also represented as instances of the Attr
interface (Figure 76, lines 1-5), accessible or mutable through the getAttributeNode
and setAttributeNode operation identifiers of the Element interface (lines 16-17).
But because we are only concerned with the access or mutation of attribute values
when accessed from instances of the Attr interface, we can disregard those operation
identifiers from Element for retrieving or setting Attr interfaces. This leaves only the
getAttribute and setAttribute operation identifiers of the Element interface to
be considered for retrieving or mutating attributes (Figure 76, lines 13-14). It must
be noted that each case for the access and mutation of an attribute is unique, which
requires handling each case individually. Returning to the Element interface, we find
that it also exposes the identifiers innerHTML, outerHTML, and insertAdjacentHTML,
which are used to insert document markup via strings, and the insertAdjacentEle-
ment identifier used to insert new element instances into the document.

102

1 interface Node : EventTarget {

2 Node insertBefore(Node node, Node? child);

3 Node appendChild(Node node);

4 Node replaceChild(Node node, Node child);

5 };

6

7 interface HTMLIFrameElement : HTMLElement {

8 attribute DOMString srcdoc;

9 };

10

11 interface Document : Node {

12 void write(DOMString... text);

13 void writeln(DOMString... text);

14 };

Well-known markup
mutation identifiers

Well-known markup accessing
and mutation identifiers

Well-known markup
mutation identifiers

Fig. 77. Well-known document mutating identifiers

Likewise, the Node interface exposes identifiers insertBefore, appendChild, and
replaceChild, which also mutate document markup but via instances of the Node
interface. It is also important to note that the means for mutating the document’s
markup using an instance of the Element or Node interface are required because of
interfaces like DOMParser (Figure 78) [30, 70].

1 [Constructor]
2 interface DOMParser {
3 [NewObject] Document parseFromString(DOMString str, SupportedType type);
4 };

Fig. 78. DOMParser Web IDL Interface

The DOMParser interface provides access to the document parser of the browser
and will not be overridden in order to facilitate the rewriting of HTML elements
inserted into the document as strings (Figure 76, lines 8-10 and Figure 77, lines 8,
12-13). To illustrate the importance of overriding the interfaces shown in Figures 76
and 77, consider the following two archived pages which employ the common design
pattern lazy loading:

1 http://web.archive.org/web/20180223141745/http://www.bbc.com/news
/world-middle-east-26116868 (Figure 79)

http://web.archive.org/web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868
http://web.archive.org/web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868

103

2 https://web.archive.org/web/20170209205035/http://www.soufeel.com
(Figure 85a)

Lazy load page 1 replays as expected (e.g., images accompanying the news story are
visible) until you scroll down to bottom of the page and notice images are missing
from the additional stories’ footer (Figure 79). On further inspection of the missing
images you will notice that the value for their img tag’s src attributes are un-rewritten
URLs, which are also found as the value of the img tag’s datasrc attributes. Because
the src attribute of those img tags were set to an un-rewritten URL, the images
they were supposed to be loading were blocked by the Wayback Machine’s content
security policy (Figure 80). Also, found on further inspection of the blocked img tags
seen in Figure 79 is an indication that the img tags were added to the document via
JavaScript by noticing the CSS classes for the images (Figure 81) and a section of
the archived HTML found below where the images are now located (Figure 82).

https://web.archive.org/web/20170209205035/http://www.soufeel.com

104

Fig. 79. bbc.com new story footer images blocked by the Wayback Machine’s content
security policy. http://web.archive.org/web/20180223141745/http://www.bb
c.com/news/world-middle-east-26116868

http://web.archive.org/web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868
http://web.archive.org/web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868

105

Fig. 80. bbc.com new story footer images blocked by the Wayback Machine’s content
security policy, network tab of browser developer tools. http://web.archive.org/
web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868

img.responsive-image__img.responsive-image__img--loading.js-image-replace

Fig. 81. bbc.com new story footer blocked images img tag CSS classes

From the CSS classes of the img tags for the blocked images (Figure 81), we know
that the img tags were responsive image placeholders that are to be replaced with the
real image by JavaScript using the information embedded in the two div tags seen in
Figure 82. The first div (id=comp-pattern-library-7) is used to embed a URL in its
data-post-load-url attribute for the retrieval of the images (Figure 79) and the second
div (id=comp-from-other-news-sites) embeds the loading strategy and information
about those images in its data-comp-meta attribute. When the page loads, the page’s
JavaScript makes a request for the lazy loaded images using the URL embedded in
the first div. The response for the request is JSON containing additional information
pertaining to the internals of the page and a string of HTML which is added to
document in preparation for the lazy loading of the images (Figure 83). The HTML
shown in Figure 83 corresponds to the image highlighted in Figure 79. The full
response can be seen in Figure 146 found in Appendix A of this thesis.

http://web.archive.org/web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868
http://web.archive.org/web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868

106

<div id="comp-pattern-library-7" class="hidden"

data-post-load-url="/news/pattern-library-components?options%5BassetId%5D=26116868&opt c

ions%5Bcontainer_class%5D=container-more-from-this-index&options%5Bdata%5D%5Bsourc c

e%5D=candy_parent_index&options%5Bdata%5D%5Bsource_params%5D%5Bsection_title%5D=1& c

amp;options%5Bcomponents%5D%5B0%5D%5Bname%5D=sparrow&options%5Bcomponents%5D%5B0%5 c

D%5Blimit%5D=3&options%5Bloading_strategy%5D=post_load&options%5Bstats%5D%5Bli c

nk_location%5D=more-section-index&options%5Bstats%5D%5Bstrapline_link_location%5D= c

more-from-this-index-headline&options%5Bstats%5D%5Bsection_label%5D=more-from-this c

-index-section-label&options%5Basset_id%5D=world-middle-east-26116868&presente c

r=pattern-library-presenter">

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

</div>

<div id="comp-from-other-news-sites" class="hidden"

data-comp-meta="{"id":"comp-from-other-news-sites","type":&q c

uot;from-other-news-sites","handler":"default","deviceGr c

oups":null,"opts":{"assetId":"26116868","condi c

tions":["is_local_page"],"loading_strategy":"post_load&q c

uot;,"asset_id":"world-middle-east-26116868"},"template" c

:"\/component\/from-other-news-sites"}">

↪→

↪→

↪→

↪→

↪→

</div>

Fig. 82. Embedded configuration for lazy loading the additional stories im-
ages. http://web.archive.org/web/20180223141745/http://www.bbc.com/ne
ws/world-middle-east-26116868

<div class="sparrow-item__image">

<div class="responsive-image responsive-image--16by9">

<div class="js-delayed-image-load"

data-src="https://ichef.bbci.co.uk/news/200/cpsprodpb/9A32/production/_99947493_collage.jpg"

data-width="976" data-height="549" data-alt="Alexanda Kotey, left, and El Shafee Elsheikh"></div>

<!--[if lt IE 9]>

<img src="https://ichef.bbci.co.uk/news/200/cpsprodpb/9A32/production/_99947493_collage.jpg"

class="js-image-replace" alt="Alexanda Kotey, left, and El Shafee Elsheikh" width="976"

height="549"/>↪→

<![endif]-->

</div>

</div>

Fig. 83. Portion of the response to the request for the additional stories im-
ages “/news/patttern-library-components?. . . ”. http://web.archive.org/web/
20180223141745/http://www.bbc.com/news/world-middle-east-26116868

As shown in Figure 83, the Wayback Machine is not rewriting JSON found in the
response bodies of archived requests, which causes the JavaScript code responsible
for the lazying loading of the images to operate on un-rewritten URLs (Figure 84).
Each div tag matching the CSS selector “div.js-delayed-image-load” is replaced with
a dummy img tag with the real image URL as the value for the tag’s datasrc attribute
set from the div’s data-src attribute (lines 3-9). Then when the JavaScript code has
determined it is time to load the real image (lines 11-20), it retrieves the URL from

http://web.archive.org/web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868
http://web.archive.org/web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868
http://web.archive.org/web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868
http://web.archive.org/web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868

107

either the datasrc or databgsrc attribute and sets the src attribute of the element if
it is an image. Otherwise, the JavaScript loads the image via the backgroundImage
property of the element’s style attribute. Now consider the second page (Figure 85a),
which unlike the first lazy loading page (Figure 79), embeds all the information
necessary for lazy loading its images using JavaScript.

Fig. 84. bbc.com lazy loading code. http://web.archive.org/web/
20180223143424/http://static.bbci.co.uk/news/1.230.02384/js/compi
led/all.js

http://web.archive.org/web/20180223143424/http://static.bbci.co.uk/news/1.230.02384/js/compiled/all.js
http://web.archive.org/web/20180223143424/http://static.bbci.co.uk/news/1.230.02384/js/compiled/all.js
http://web.archive.org/web/20180223143424/http://static.bbci.co.uk/news/1.230.02384/js/compiled/all.js

108

(a) http://www.soufeel.com/ as it exists archived. https://web.archive.org/web/
20170209205035/http://www.soufeel.com/

http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/

109

(b) http://www.soufeel.com/ as it exists on the live web

Fig. 85. http://www.soufeel.com/ archived vs live web

As shown in Figure 85a, replay of the e-commerce site http://www.soufeel.com/
is severely impacted (Figure 85b) by the lack of rewriting on the part of the Wayback
Machine to URLs used for the pages image’s, all of which are lazy loaded (Figure 86).
What makes this page unique, beyond the fact that all of its images are lazy loaded,
is that the page is using three different ways for lazy loading its images (Figures 88,
90, and 92).

http://www.soufeel.com/
http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/

110

Fig. 86. Network tab of the developers console when replaying soufeel.com from the
Wayback Machine displaying the blocked images. https://web.archive.org/web/
20170209205035/http://www.soufeel.com/

<img class="lazy" data-lazysrc="http://www.soufeel.com/skin/frontend/smartwave/default/images/ho c

me/new-img-02.jpg"/>↪→

<img class="lazy" data-lazysrc="http://www.soufeel.com/skin/frontend/smartwave/default/images/ho c

me/stopper-img-01.jpg"/>↪→

<div class="swiper-slide lazy" data-lazystyle="width:100%; background:url('http://www.soufeel.co c

m/skin/frontend/smartwave/default/images/home/row-img-01.jpg') center center

no-repeat;background-size:cover;"></div>

↪→

↪→

Fig. 87. Select HTML elements used by lazy loading way 1. https://web.archive.
org/web/20170209205035/http://www.soufeel.com/

The first way (Figure 88) is used to lazy load both img and div tags matching
those seen in Figure 87. When the lazyRun function is used, img tags with the
data-lazysrc attribute have their src attribute set using the value of the data-lazysrc

attribute and div tags with the data-lazystyle have their style attribute set to the
value of the data-lazystyle attribute. Also, seen in Figure 88 is when a modal diagolue
is shown to the viewers of the page, the modal’s innerHTML attribute is set using
the query sector retrieved from the data-body attribute and an anchor tag has its href
attribute set from its data-href attribute.

https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/

111

Fig. 88. soufeel.com lazy loading way 1, code embedded in HTML and formatted for
presentation. https://web.archive.org/web/20170209205035/http://www.souf
eel.com/

The second way (Figure 90) is tied to when viewers of the page scroll down the
page in order to load the img tags seen in Figure 89. When a scroll event is detected,
the img tags with the data-original attribute have their src attribute set to the value
of the tags data-original attribute. If the lazily loaded tag is not an img tag, then the
tags style attribute has the property background-image set to the value of the tags
data-original attribute.

https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/

112

<img class="lazyload"

data-original="http://static.soufeel.com/media/catalog/product/cache/0/thumbnail/280x280/9df78e c

ab33525d08d6e5fb8d27136e95/X/S/XS1074_1.jpg"/>↪→

<img class="lazyload" id="product-collection-image-3440"

data-original="http://static.soufeel.com/media/catalog/product/cache/0/small_image/280x280/9df7 c

8eab33525d08d6e5fb8d27136e95/X/S/XS1401A.png"/>↪→

Fig. 89. soufeel.com select HTML elements used by lazy loading way 2. Formatted for
presentation. https://web.archive.org/web/20170209205035/http://www.souf
eel.com/

Fig. 90. soufeel.com lazy loading way 2 code. Formatted for presenta-
tion. https://web.archive.org/web/20170209205035/http://static.soufeel
.com/js/smartwave/jquery/plugins/lazyload/jquery.lazyload.min.js

https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://static.soufeel.com/js/smartwave/jquery/plugins/lazyload/jquery.lazyload.min.js
https://web.archive.org/web/20170209205035/http://static.soufeel.com/js/smartwave/jquery/plugins/lazyload/jquery.lazyload.min.js

113

<a class="home-banner-img home_bg6 swiper-lazy"
href="/web/20170209205035/http://www.soufeel.com/presale"↪→

data-background="http://www.soufeel.com/skin/frontend/smartwave/default/custom/static/brand/act c
ivity/presale/128/home-pre-sale.jpg">↪→

<a class="home-banner-img home_bg6 swiper-lazy"
href="/web/20170209205035/http://www.soufeel.com/valentines-gift-sale"↪→

data-background="http://www.soufeel.com/skin/frontend/smartwave/default/custom/static/brand/act c
ivity/valentines-gift-sale/home-valentines-gift-sale.jpg">↪→

Fig. 91. soufeel.com select HTML elements used by lazy loading way 3. https:
//web.archive.org/web/20170209205035/http://www.soufeel.com/

The third and final way (Figure 92) is tied to the anchor tags (Figure 91)
with the data-background attribute or elements with the data-srcset or data-sizes

attributes contained in a slider. As the slider progresses, the images are loaded
according the value of the anchor tag’s data attribute, which in the case of https:
//web.archive.org/web/20170209205035/http://www.soufeel.com/, are anchor
tags that have their style attribute’s background-image property set to the value
of the tags data-background attribute. The final set of well-known identifiers can be
found in the naming conventions of the exposed identifiers for non-element interfaces
and how the identifiers of the interfaces can be used as the typing of an arbitrary
identifier (Figure 93).

https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/

114

Fig. 92. soufeel.com lazy loading way 3 JavaScript code. https:
//web.archive.org/web/20170209205035/http://static.soufeel.com/js/
smartwave/jquery/plugins/swiper/js/swiper.min.js

https://web.archive.org/web/20170209205035/http://static.soufeel.com/js/smartwave/jquery/plugins/swiper/js/swiper.min.js
https://web.archive.org/web/20170209205035/http://static.soufeel.com/js/smartwave/jquery/plugins/swiper/js/swiper.min.js
https://web.archive.org/web/20170209205035/http://static.soufeel.com/js/smartwave/jquery/plugins/swiper/js/swiper.min.js

115

1 [Constructor]

2 interface XMLHttpRequest : XMLHttpRequestEventTarget {

3 void open(DOMString method, DOMString url);

4 };

5

6 [Unforgeable]

7 interface Location {

8 attribute DOMString href;

9 void assign(DOMString url);

10 void replace(DOMString url);

11 };

12

13 partial interface Window {

14 Promise<Response> fetch(RequestInfo input, optional Dictionary init);

15 };

16

17 typedef (Request or USVString) RequestInfo;

18

19 [Constructor(RequestInfo input, optional Dictionary requestInitDict)]

20 interface Request {

21 readonly attribute USVString url;

22 };

23

24 [Constructor(DOMString scriptURL)]

25 interface Worker : EventTarget {};

26

27 [Constructor(DOMString scriptURL, optional DOMString name)]

28 interface SharedWorker : EventTarget {};

Well-known URL identifiers

Type that is an interface with
well-known URL identifier

URL

Well-known URL identifier

Fig. 93. Well-known URL identifiers variations and patterns

As shown in Figure 93, the identifiers of non-element interface identifiers can
be discovered by using the naming conventions of their attributes, and operation
or constructor argument identifiers, namely url (lines 3, 9-10, and 21), scriptURL
(lines 24 and 27), and href (line 8). The downside to using only the identifier names
previously mentioned is we would miss the operation identifier fetch (Figure 93,
line 13) exposed on the Window interface because neither the identifier itself nor
its argument identifiers match any of the well-known identifiers for non-element
interfaces. But that is overcome when noticing the typing of fetch’s first argument
input (line 14), which is RequestInfo (line 16), a typedef for the Request interface
or a string. Because we have already discovered the Request interface by its url

attribute identifier and know the interface is a part of the RequestInfo typedef, we
can use the typedef and the Request interfaces type (Request) to discover additional

116

identifiers. By matching on the type or typedef of an already identified interface, we
discover the declared constructor of the Request interface and the fetch operation
of the Window interface. More specifically, because the url attribute is readonly and
the Request interface has a constructor whose arguments are an instance of itself
or a string, we can conclude that the url attribute is set via one of the types in the
typedef or by the requestInitDict (Figure 93, line 19). The type system of Web
IDL not only provides a useful heuristic for determining how a discovered identifier is
used when name matching is impossible, but also for finding discovering usages of
the type for an already discovered interfaces (Figure 94).

1 interface Document : Node {

2 [PutForwards=href, Unforgeable] readonly attribute Location? location;

3 };

4

5 [PrimaryGlobal]

6 interface Window : EventTarget {

7 [PutForwards=href, Unforgeable] readonly attribute Location location;

8 };

Assignable to URL Known type

Fig. 94. Type matching to discover additional interfaces which expose an attribute
whose typing is an identified interface

The Location interface previously discovered by matching on the well-known non-
element interface identifiers href and url, (Figure 93, lines 5-10) is also discoverable
as the location attribute of the Document and Window interfaces when matching on
the attribute’s type (Figure 94, lines 2 and 7). Besides the Unforgeable extended at-
tribute, (Figure 94, lines 2 and 7), the location attribute of both Window and Document
has the PutForwards=href extended attribute defined for it and href is a well-known
non-element interface identifier. But that presents a problem given the nature of that
extended attribute, which is that it indicates that direct assignments to the attribute
from the exposing interface, i.e. window.location = "<URL>", is equivalent to di-
rectly assigning the target attribute (href), i.e. window.location.href = "<URL>"
[18, 12].

Further more, compounding the problem is that both the Document and Window
interfaces expose Unforgeable instances of the Location interface, and when an
identifier has the Unforgeable extended attribute defined for it, we cannot override
it [18]. Because the location interface can be used to navigate the browser and is
an attribute of the primary global of the JavaScript execution environment object

117

Window, it will require special handling beyond identification. To illustrate this,
consider the following example that uses the Location interface in conjunction with
the History interface (Figure 95), which would have been discovered using the non-
element well-known identifier url, to change the URL of displayed in the navigation
bar of the browser when replaying a web page from the Internet Archive’s Wayback
Machine from a URI-M to a nonexistent URL (Figure 96 and Figure 97).

1 interface History {

2 void pushState(SerializedScriptValue data, DOMString? title, DOMString? url);

3 void replaceState(SerializedScriptValue data, DOMString? title, DOMString? url);

4 };

Fig. 95. History interface

Fig. 96. Browser history manipulation using the History and Location interfaces
before manipulation.

118

The example page seen in Figure 96 provides an input field for entering in URL
path segments which are then appended to origin of the browser (accessed through
window.location.origin) and used as the url argument of either the push or re-
place state operations of the history interface (Figure 95, lines 2-3) when the button
labeled “Change It!” is pressed. The page also displays its starting location, set only
once using the value of window.location, and the current location also set using
window.location but changed every time the “Change It!” button is pressed. The
results of entering “/manipulating/browser/history/is/fun” into the input field and
pressing the “Change It!” button is seen in Figure 97. Because both the Location and
History interfaces are not overridden, the resulting URL displayed is not as would be
expected from the page’s live web behavior (Figure 98):
https://web.archive.org/manipulating/browser/history/is/fun
https://web.archive.org/web/20180224172547/http://www.cs.odu.edu/manipulating
/browser/history/is/fun

119

Fig. 97. Browser history manipulation using the History and Location interfaces
after manipulation, http://web.archive.org/web/20180224172547/http://www.
cs.odu.edu/∼jberlin/simpleHistory.html

http://web.archive.org/web/20180224172547/http://www.cs.odu.edu/~jberlin/simpleHistory.html
http://web.archive.org/web/20180224172547/http://www.cs.odu.edu/~jberlin/simpleHistory.html

120

Fig. 98. Browser history manipulation using the History and Location interfaces live
web, http://www.cs.odu.edu/∼jberlin/simpleHistory.html

Finally, recall the replay issues discussed in the introduction of this thesis for
mementos of CNN [11] and user pages found at mendeley.com [15]. The CNN webpage
could not replay because the archived JavaScript wished to set the domain of the
page to one that is different than the archives, and Mendeley user pages needed
cookies, both of which are properties of the Document interface and should be added
to well-known identifiers. This leaves us with a baseline of ten identifiers, seven for
discovering interfaces that are HTMLElements and three identifiers for the discovery
of non-HTMLElement interfaces (Table 10). The remaining well-known interface and
member identifiers found in Table 11 are considered special cases given the specificity
of their use cases.

http://www.cs.odu.edu/~jberlin/simpleHistory.html

121

Table 10
Baseline Interface Discovery Identifiers

Interface kind Identifiers

HTMLElement action, content data, href, poster, src, srcset

Non-HTMLElement href, url, scriptURL

Table 11
Special Well-Known Interface and Member Identifiers

Interface Identifiers Member Type Identifiers

HTMLStyleElement Attribute textConent

HTMLIframeElement Attribute srcdoc

Attr Attribute value, nodeValue

Node Operation
insertBefore, appendChild

replaceChild

Location
Attriubte href

Operation assign, replace

Document
Attribute domain, cookie

Operation write, writeln

CSSStyleDeclaration
Attribute cssText

Operation setProperty

Element

Attribute innerHTML, outerHTML

Operation

getAttribute, setAttribute

insertAdjacentElement

insertAdjacentHTML

122

5.3.2 AUTOMATIC WEB IDL INTERFACE IDENTIFICATION

Automatically identifying relevant Web IDL interfaces can be expressed in two
phases: fragment extraction (Algorithm 1) and identification (Algorithm 2). In the
first phase, fragment extraction, each fragment’s members from the set of Web IDL
fragments to be considered are extracted and the following steps are performed.

Algorithm 1 Web IDL Fragment extraction
1: function GetIdlData(idlFragments)
2: interfaces ← Map
3: implements, typeDefs,isTypeDefd ← MultiMap
4: for each member ∈ extractFragmentMembers(idlFragments) do
5: if member 7→ Interface ∨ ParitailInterface then
6: if interfaces.hasKey(member.identifier) then
7: interfaces[member.identifier] ← update(interfaces[member.identifier],member)
8: else
9: interfaces[member.identifier] ← member

10: else if member 7→ Implements then
11: implements[member.target] ← member.implements
12: else if member 7→ TypeDef then
13: typeDefs[member.identifier] ← member.types
14: for each type ∈ member.types do
15: isTypeDefd[type] ← member.identifier

16: for each identifier ∈ interfaces.keys do
17: interface ← interfaces[identifier]
18: if interfaces[identifier].inheritance ! = Nil then
19: interfaces[identifier] ← updateInheritanceInformation(interface,interfaces)

20: if implements.hasKey(identifier) then
21: interfaces[identifier] ← updateFromImplements(interface,interfaces,implements)

22: return interfaces, typeDefs,isTypeDefd

For each member, we accumulate a mapping of interface identifiers to interfaces,
which interfaces an interface implements, ensure that partial interfaces are merged
into the primary interface, and typedefs to the type(s) that were redefined. Then
for each of the extracted interfaces, we merge implemented interfaces into the imple-
menter interface and ensure interfaces inheriting from another are updated to include
information about the inheritance hierarchy they are part of. Finally, this returns the
interfaces and typedefs extracted to the next phase identification.

123

Algorithm 2 Identify interfaces
1: function IdentifyInterfaces(idlFragments)
2: interfaces, typeDefs,isTypeDefd ← GetIdlData(idlFragments)
3: foundInterfaces ← Map
4: for each interface ∈ interfaces do
5: if !interface.noInterfaceObject then
6: if isOrSubTypeOfHTMLElement(interface) then
7: CheckMemberIdentifiers(interface,htmlElementIds,foundInterfaces)
8: else
9: CheckMemberIdentifiers(interface,nonHTMLElementIds,foundInterfaces)

10: if checkSpecial.hasKey(interface.identifier) then
11: SpecialCheck(inteface,specialCheck,foundInterfaces)

12: for each foundId ∈ foundInterfaces.keys do
13: if isTypeDefd.hasKey(foundId) then
14: FindTypedefArugments(isTypeDefd[foundId],interfaces,foundInterfaces)

15: for each foundId ∈ foundInterfaces.keys do
16: if nonElementInterface(foundInterfaces[foundId]) then
17: CheckFoundAttsRefFoundType(foundId,interfaces,foundInterfaces)

18: return foundInterfaces,typeDefs,isTypeDefd

The identification phase (Algorithm 2) is multi-part algorithm performing the
steps for identifier discovery as described in the previous section, Subsection 5.3.1.
For each interface that has an interface object, we check to see if it has members
matching the well-known HTML identifiers if it is an HTMLElement, otherwise the
check is performed using the non-element identifiers (Algorithm 3). A further check is
made to determine if the interface is a special case and if so, its members are checked
using the associated attribute or operation identifiers found in Table 11 (Algorithm 3).

124

Algorithm 3 Check Interface Based On Identifier Names
1: function CheckMemberIdentifiers(interface,toFind,found)
2: attributes ← getAttributesNamed(interface,toFind)
3: operations ← getOperationsWithArgsNamed(interface,toFind)
4: constructors ← getConstructorsWithArgsNamed(interface,toFind)
5: if anyNotEmpty(attributes,operations,constructors) then
6: identified ← newIdentified(interface,attributes,operations,constructors)
7: found[identified.identifier] ← identified

8: function SpecialCheck(interface,specialCheck,found)
9: attributes ← getAttributesNamed(interface,specialCheck.attributes)

10: operations ← getOperationsWithArgsNamed(interface,specialCheck.operations)
11: if anyNotEmpty(attributes,operations,constructors) then
12: if found.hasKey(interface.indentifer) then
13: foundIface ← found[interface.identifier]
14: foundIface.attributes ← foundIface.constructors ∪ attributes
15: foundIface.operations ← foundIface.operations ∪ operations
16: else
17: foundIface ← newIdentified(interface,attributes,operations)
18: found[identified.identifier] ← identified

Once every interface having an interface object has been checked, we determine
which of the identified interfaces are used in a typedef and check the arguments of
operations and constructor of each identified interface to determine if their typing
is the typdef. Then we determine if any of the identified interfaces have attributes
whose type is an already identified interface to ensure we can handle cases such as
the location attribute of Window and Document (Algorithm 4). Finally, this returns
the identified interfaces and the typedef information for use in code generation.

125

Algorithm 4 Find Interfaces with members typed
1: function FindTypedefArugments(typeDefs,interfaces,found)
2: for each typedef ∈ typeDefs do
3: for each interface ∈ interfaces do
4: operations ← getOperationsWithArgsTyped(interface,typedef)
5: constructors ← getConstructorsWithArgsTyped(interface,typedef)
6: if operations ! = ∅ ∨ constructors ! = ∅ then
7: if found.hasKey(interface.identifier) then
8: foundIface ← found[interface.identifier]
9: foundIface.operations ← foundIface.operations ∪ operations

10: foundIface.constructors ← foundIface.constructors ∪ constructors
11: else
12: foundIface ← newIdentified(interface,∅,operations,constructors)
13: found[foundIface.identifier] ← foundIface

14: function CheckFoundAttsRefFoundType(foundId,interfaces,found)
15: for each fId ∈ foundInterfaces.keys do
16: atts ← getAttriubteOfType(interfaces[fId],foundId)
17: if notEmpty(atts) then
18: foundInterfaces[fId].exposesFound[foundId] ← atts
19: exposed ← foundInterfaces[foundId]
20: exposed.exposedOnFound ← exposed.exposedOnFound ∪ fId

The identification algorithms described was run on an input set of Web IDL
fragments retrieved from the source code repository of the Chromium browser1 using
the W3C provided Node.js parser2. Unsurprisingly, the HTML element interfaces
which we are interested in were discovered as was the named constructor Audio
associated with the HTMLAudioElement (Table 12). We did not re-list the special case
interfaces as they have already been shown to exist (Figures 72 and 76) and listed
previously (Table 11).
1https://chromium.googlesource.com/chromium/blink/+/master/Source
2https://github.com/w3c/webidl2.js

https://chromium.googlesource.com/chromium/blink/+/master/Source
https://github.com/w3c/webidl2.js

126

Table 12
Identified HTML Interfaces

Interface Member

HTMLBaseElement, HTMLAnchorElement
href

HTMLAreaElement, HTMLLinkElement

HTMLAudioElement, HTMLEmbedElement

src
HTMLFrameElement, HTMLTrackElement

HTMLInputElement, HTMLMediaElement

HTMLScriptElement

HTMLImageElement
src, srcset

HTMLSourceElement

HTMLIFrameElement src, srcdoc

HTMLFormElement action

HTMLMetaElement content

HTMLObjectElement data

HTMLStyleElement textContent

HTMLVideoElement poster, src

HTMLAudioElement Audio(src)

The remaining interfaces and attribute or operation identifiers were discovered
using the well-known non-element identifiers from Table 10 and the type matching
heuristic (Table 13). The identification algorithm was successfully able to identify
the interfaces for using the HTTP protocol namely fetch, Request, Response,
XMLHTTPRequest and EventSource [12], the WebSocket protocol [71], as well as the
location attribute of both Window and Document.

127

Table 13
Identified Non-Element or Special Case Interfaces

Interface Type Member

Clients Operations openWindow

Document Attributes location

EventSource
Attributes url
Constructors Constructor(url, eventSourceInitDict)

History Operations pushState, replaceState

Navigator Operations
sendBeacon, registerProtocolHandler

isProtocolHandlerRegistered
unregisterProtocolHandler

Request
Attributes url
Constructors Constructor(input, requestInitDict)

Response
Attributes url
Operations redirect

ServiceWorkerContainer Operations register

ServiceWorkerGlobalScope Operations fetch

SharedWorker Constructors Constructor(scriptURL, name)

URL
Attributes href
Operations revokeObjectURL
Constructors Constructor(url, base)

WebSocket
Attributes url
Constructors Constructor(url, protocols)

Window
Attributes Location
Operations open, fetch

WindowClient
Attributes url
Operations navigate

Worker Constructors Constructor(scriptURL)

WorkerGlobalScope Operations fetch

XMLHttpRequest Operations open

128

5.3.3 REWRITER MODIFICATIONS

Generation of the client-side rewriting library, although informed by the identified
interfaces, relies on the Web IDL to JavaScript mapping discussed in Section 5.2
as the basis for generating the overrides applied to those interfaces. As discussed
in Section 5.2, we know that interfaces that are not declared with the NoInter-
faceObject extended attribute have a corresponding JavaScript object or function
object and their attributes and operations exist as named properties on the interface’s
prototype object [31, 18]. The prototype object in JavaScript is the fundamental
building block for all objects, and provides a permanent record of an object’s own
(non inherited) and inherited properties. Explicit creation of objects is done via
function objects, which act as the constructor for the object [31]. That is to say that
every object in JavaScript has a prototype but may not have a function object as
seen in Figures 99 and 100.

1 interface HTMLIFrameElement : HTMLElement {

2 attribute DOMString srcdoc;

3 };

4

5 [Constructor]

6 interface XMLHttpRequest : XMLHttpRequestEventTarget {

7 void open(DOMString method, DOMString url);

8 };

Object
Attribute on prototype

Function object

Operation on prototype

Fig. 99. Object vs Function Object Web IDL

The differentiation between whether an interface is a function object or an object
is that interface which have the Constructor extended attribute defined for it are
function objects and interfaces lacking the Constructor extended attribute are not as
seen in Figure 99. Because the HTMLIframeElement interface lacks the definition of
the Constructor extended attribute (line 1), you cannot create a new instance of the
interface directly (Figure 100, line 2), whereas because the XMLHttpRequest interface
is defined with the Constructor extended attribute (line 5) you can (Figure 100, line
7). But both new instances have a prototype object (Figure 100, lines 4 and 9) that
allows them to behave as defined by their respective Web IDL definitions (Figure 99).

129

1 // object that is not a function object but is creatable

2 let iframe = document.createElement('iframe')

3 // mutate property on prototype for this instance

4 iframe.srcdoc = 'Hi'

5

6 // object that is a function object creatable using constructor

7 let httpRequest = new XMLHttpRequest()

8 // call function property on prototype for this instance

9 httpRequest.open('GET', 'https://google.com')

Fig. 100. Object vs. Function Object JavaScript

It must be noted that all interfaces representing HTML elements are not function
objects and cannot be created directly using the constructor pattern of function
objects, because they are associated with the HTML markup of the document [30].
Hence, there is the restriction of only being creatable using the createElement
operation of the Document interface (Figure 100, line 2), except for HTMLElement
interfaces that have the NamedConstructor extended attributed defined (Figures 101
and 102).

1 [Exposed=Window,NamedConstructor=Audio(DOMString src)]

2 interface HTMLAudioElement : HTMLMediaElement {

3 attribute DOMString src;

4 };

Fig. 101. HTMLAudioElement named constructor Web IDL

The named constructor of the HTMLAudioElement interface Audio (Figure 101,
line 1), although it may appear to be a separate function object that inherits from
HTMLAudioElement, it is not a separate function object. The HTML specification
considers the audio element to represent a sound or audio stream that is not required
to exist inside the HTML markup of the document for instances of the interface to be
used to play audio [12]. Because the HTML specification does not restrict the usage
of the audio element to only functioning as an HTML element, you can create a new
HTML audio element using the Audio named constructor (Figure 102, line 2) and
begin playing audio without adding the new element to the document (Figure 102,
line 3).

130

Fig. 102. HTMLAudioElement named constructor JavaScript

Since we know that every identified interface will have a prototype object but
not necessarily a function object, and the prototype object provides a permanent
record of its properties, the modification made to those interfaces can be categorized
by five types of overrides: patch, replace, replace plus patch, foreign substitution, and
extend. The patch override, as the name implies, patches the prototype object of
an identified interface that does not expose a constructor by redefining the named
properties of the interface’s attributes and operations in order to intercept un-rewritten
URLs (Figure 103). Because the prototype object provides a permanent record for
all properties an object has, redefinition of attributes only replaces the original named
property’s getter and setter functions to use archive controlled versions. This is the
same for the redefinition of named properties for operations, which only replaces the
original function’s definition with an archived controlled version (Figure 104).

1 interface Element : Node {

2 attribute DOMString innerHTML;

3 attribute DOMString outerHTML;

4

5 DOMString? getAttribute(DOMString name);

6 void setAttribute(DOMString name, DOMString value);

7 };

Redefine properties getter and setter
functions on prototype object

Redefine function directly
on prototype object

Fig. 103. Interface attribute and operation patch overrides

131

prototype object

attribute property

getter

setter

function property

prototype object

attribute property

archive getter

original getter

archive setter
original setter

archive function property

original function property

Patched

Fig. 104. Prototype object patch modification

The replace override is used to replace (shadow) the definition of an attribute
or operation directly on the existing instance of the interface Window which is the
primary global execution object (Figure 105). Because the Window interface is the
global execution object, it represents the current browsing context, and with the
in-place security constraints of the browser, we cannot directly modify the existing
Window object or its prototype. Rather, the existing instance of the Window interface
(window) is an WindowProxy object [12, 72] that proxies the exposed attributes and
operations of the Window interface. Both are internally managed by the browser. In
order to ensure that the attributes and operations exposed by the Window interface
cannot be used to introduce un-rewritten URLs, we can only replace their definitions
with archived-controlled versions on the WindowProxy object (Figure 106). Unlike
the Window interface, the additional interface which has an existing instance can have
the overrides targeting their exposed attributes and operations made to both the
existing instance and prototype object.

1 partial interface Window {

2 Promise<Response> fetch(RequestInfo input, optional Dictionary init);

3 };
Replace defintions on existing instance

Fig. 105. Interface existing instance replace modification

132

global execution object proxy

attribute property

archive getter

proxied getter

archive setter
proxied setter

archive function property

proxied function property

internal global execution object

internal prototype

attribute property

original getter

original setter

original function property

Shadows

Fig. 106. Global execution object replace modification

The replace plus patch override, as the name implies, is a combination of both the
replace and patch overrides applied to the remaining identified interfaces that have
existing instances. For example, the Document interface provides two operations for
introducing new markup into the current page, namely write and writeln (Figure 107,
lines 2-3). We wish to ensure that both the existing instance and its prototype object
share the same overrides that were made to the existing instance (Figure 108). By
replacing the existing instance’s copy of the operations and patching the prototype
object for the interface, we ensure that no reference to an un-patched version of
the named property exposed by the interface can be retrieved. The next override,
foreign substitution, unlike the other overrides, is the only override to introduce a
new (foreign) representation of the interfaces it is targeting.

1 interface Document : Node {
2 attribute DOMString domain;
3 void write(DOMString... text);
4 void writeln(DOMString... text);
5 };

Replace and patch
defintions on
existing instance
and prototype object

Fig. 107. Existing instance replace plus patch

133

object

attribute property

archive getter

original getter

archive setter
original setter

archive function property

original function property

prototype object

attribute property

archive getter

original getter

archive setter
original setter

archive function property

original function property

Existing

Shadows

Original

Fig. 108. Existing instance replace plus patch modification

The foreign substitution override exists primarily due to the capabilities of the
unforgeable (unmodifiable or overridable) Location interface which is also an Un-
forgeable attribute of the primary global object Window and the Document interface
(Figure 109), discussed previously in Sections 5.3.1 and 5.2. Any assignment to
the existing instance of the Location interface itself or to the interfaces href at-
tribute will navigate the browser away from the current page as well as usage of its
two operations, assign and replace. Because of the capabilities of the unforgeable
Location interface, archives began rewriting server-side the text string “location”
found in the archived JavaScript along-side any URLs it could identify to reference
WB_wombat_self_location, an archive implementation of the Location interface
(Figure 47), discussed in the temporal jailing section of Chapter 4. Even though
server-side rewriting the text string “location” in the archived JavaScript of a page
was more successful than server-side rewriting of URLs, it was also rewriting instances
of the text string “location” that were not actual nor could ever be instances of the
Location interface (Figure 110).

134

[Unforgeable]

interface Location {

attribute USVString href;

void assign(USVString url);

void replace(USVString url);

};

[PrimaryGlobal]

interface Window : EventTarget {

[PutForwards=href, Unforgeable] readonly attribute Location? location;

};

interface Document : Node {

[PutForwards=href, Unforgeable] readonly attribute Location? location;

}

Fig. 109. Foreign substitution unforgeable Location interface

1 // archive it version
2 window.__PRELOADED_STATE__ = {
3 "WB_wombat_self_location": {
4 "id": "fcc2fd44-d82e-45ca-8855-35ee6b8bfbe9",
5 "latitude": 63.44,
6 "longitude": 10.4,
7 "name": "Trondheim, Norway",
8 "city": "Trondheim",
9 "state": "Sør-Trøndelag",

10 "country": "Norway"
11 },
12 };
13
14 o.Auth.authCodeFlow({
15 authenticateOnStart: !1,
16 apiAuthenticateUrl: function() {
17 var t = "/sign-in/?routeTo=" +
18 encodeURIComponent(WB_wombat_self_location);
19 return WB_wombat_self_location = t
20 },
21 refreshAccessTokenUrl:

"/profiles/refreshToken/"↪→
22 });
23
24 function s(t) {
25 var e = t.headers.WB_wombat_self_location;
26 if (e && this.settings.followLocation &&
27 201 === t.status) {
28 var n =
29 {method: "GET",url: e,responseType:

"json"};↪→
30 return this.send(n);
31 }
32 return t.headers.link && "string" == typeof

t.headers.link↪→
33 && (t.headers.link = l(t.headers.link)), t;
34 }

// live web version
window.__PRELOADED_STATE__ = {

"location": {
"id": "fcc2fd44-d82e-45ca-8855-35ee6b8bfbe9",
"latitude": 63.44,
"longitude": 10.4,
"name": "Trondheim, Norway",
"city": "Trondheim",
"state": "Sør-Trøndelag",
"country": "Norway"

},
};

o.Auth.authCodeFlow({
authenticateOnStart: !1,
apiAuthenticateUrl: function() {

var t = "/sign-in/?routeTo=" +
encodeURIComponent(location);

return location = t
},
refreshAccessTokenUrl:

"/profiles/refreshToken/"↪→
});

function s(t) {
var e = t.headers.location;
if (e && this.settings.followLocation &&

201 === t.status) {
var n =

{method: "GET",url: e,responseType:
"json"};↪→

return this.send(n);
}
return t.headers.link && "string" == typeof

t.headers.link↪→
&& (t.headers.link = l(t.headers.link)), t;

}

Not actual location

Actual location

Not actual location

Fig. 110. Archive-It rewriting the text string “location” in the archived JavaScript of
mendeley.com user pages. Live web version on the right.

135

The JavaScript code excerpts shown in Figure 110 come from the same Archive-It
archived user page of mendeley.com that suffers from the infinite redirection issue on
replay discussed in the introduction of this thesis (Chapter 1). As shown in Figure 110,
Archive-It is only changing the text string “location” to “WB_wombat_self_location”
correctly twice out of the four rewrites shown. The first incorrect rewrite happens for
an object that describes the location of the user (lines 2-12) and the second happens
for the location property of an object that is the HTTP header of an HTTP response
(lines 25-33). The remaining two rewrites (lines 18 and 19) were made correctly and
are found in the code causing redirection when replayed because the page’s JavaScript
expects a cookie to exist which is nonexistent. Webrecorder and Pywb, like Archive-It,
were incorrectly rewriting the “location” text string in an archived page’s JavaScript
but also in non-JavaScript content bundled with the JavaScript (Figure 111).

Fig. 111. Pywb version 0.33 rewriting the text string “location” found in non-
JavaScript page markup for the documentation of React Router. https://reacttra
ining.com/react-router/web/example/auth-workflow

https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow

136

Fig. 112. Text string “location” in HTML bundled with the JavaScript for the
documentation of React Router. https://reacttraining.com/react-router/

The page seen in Figure 111 is from the documentation for the JavaScript library
React-Router3, which bundles the example code for its documentation as HTML
strings alongside the page’s JavaScript. This allows for the pre-rendered documenta-
tion to be swapped out quickly rather than having to incur the cost of both parsing
and rendering the JavaScript code. But because the example code was bundled with
the page’s JavaScript, the text string “location” was incorrectly rewritten server-side
due to the MIME type being application/javascript not text/html. A further example
of the potentially destructive nature of server-side rewriting targeting non-URL text
strings in archived JavaScript can be seen in Figure 113a. In addition to the rewriting
of the text string “location”, the text string “top” was also being rewritten in order to
ensure the archived JavaScript could not detect it was replayed from within an iframe,
discussed in the Temporal Jailing section of Chapter 4. Comparing the documentation
snippet from the archived page (Figure 113a) to its live web counterpart (Figure 113b),
it is clear to see that those rewrites were made incorrectly.
3https://github.com/ReactTraining/react-router

https://reacttraining.com/react-router/
https://github.com/ReactTraining/react-router

137

(a) Pywb Version 0.33 rewriting the text strings “location” and “top”

138

(b) Original React Router documentation

Fig. 113. Incorrect rewriting of the text string “location” and “top” in React Router’s
documentation. The incorrect rewrites are highlighted in red (Figure 113a) and the
original strings in the documentation are highlighted in green (Figure 113b)

def_prop(win.Object.prototype, "WB_wombat_location", setter, getter);
def_prop($wbwindow.Object.prototype, "WB_wombat_top", setter, getter);

Fig. 114. Webrecorder and Pywb global patch override for its rewriting of the text
strings “location” and “top”

139

// implicitly added to global window interface object
var WB_wombat_self_location;
var WB_wombat_top_location;
// added directly to document interface object
document.WB_wombat_self_location = WB_wombat_self_location;

Fig. 115. Archive-It’s mitigation for its rewriting of the text string “location” and
“top”

In order to compensate for the server-side rewriting of the text strings “location”
and “top” in archived JavaScript, Webrecorder and Pywb applied a patch override to
the prototype inherited by every JavaScript object (Figure 114). Archive-It, on the
other hand, is only adding the necessary objects as properties of the document and
window interfaces (Figure 115). This implies that if the JavaScript code for handling
HTTP request redirection, seen in Figure 110, were to be executed on replay, the code
would fail because the location property was rewritten to WB_wombat_self_location,
a non-existent property on an object representing HTTP headers. Obviously this
is not correct rewriting on the part of Archive-It, Webrecorder, and Pywb. Even
though the latter two correct this mistake by performing a global patch modification
(Figure 114), all three would still perform the incorrect rewriting shown in Figures 111
and 113a.

The final override type, extend, creates a new subtype of non-element interfaces
that have a constructor (Figure 99, lines 5-8) or an HTMLElement which has a named
constructor (Figure 101) and replaces the reference to the interface on the primary
global object with the archived controlled subtype. This override is different from
foreign substitution as the new interface inherits all the properties of the extended
interface and is a subtype of the extended interface, not a new foreign type (Figure 116).

140

Fig. 116. Example extend override

5.3.4 REDUCING THE AMOUNT OF SERVER-SIDE REWRITING

REQUIRED FOR THE FOREIGN SUBSTITUTION MODIFICATION

Due to the potentially dangerous server-side rewriting done in order to facilitate the
foreign substitution modification, we have developed a novel solution for eliminating
the majority of additional rewrites required for the foreign substitution modification
through the usage of a JavaScript Proxy object [31].

The JavaScript Proxy object allows an archive to perform runtime reflection for
fundamental operations performed on or with the object being proxied. Simply put,
the Proxy object allows for an archive to define custom behavior for all operations
that can be performed with or on the object that cannot be done via the previous
three modifications via interceptors. This is especially useful for the creating a more
thorough override for both the Window and Document interfaces (Figure 117), both of
which had properties that were incorrectly rewritten (Figures 110, 111, and 113a). As
discussed previously, an archive cannot override the existing instance for the Window
object, and likewise, an archive cannot directly proxy the existing instance for the
Window interface but must proxy a plain object (Figure 117, line 2) [31, 18, 12].

141

Fig. 117. Archive Window and Document interface proxies

Because the archive proxy for the existing instance of the Window interface is in
actuality a plain object, each new property addition intercepted by the window proxy
must be added to both the plain object and the existing window interface instance, as
well the operation interceptors shown in Figure 117 lines 3-13. The existing instance
for the Document interface on the other hand has no such restrictions and archives
can directly proxy the existing instance for the Document interface and need only to
supply an interceptor for the property getter and setter (Figure 117). Thus reducing
the minimal server-side rewriting requirement for JavaScript to URL rewriting and
the setup shown in Figure 118. By wrapping the archived JavaScript in an anonymous
block scope and re-declaring each overridden interface’s existing instance using the let
declarator, an archive ensures that the archived JavaScript of page can only perform
operations that the archive allows.

142

Fig. 118. Archive JavaScript proxy setup anonymous block scope

Each re-declaration (foreign substitution) is bound to the scope of the anonymous
block wrapping the archived JavaScript, allowing for the re-declarations to shadow
the originals from within the anonymous block scope only. This allows the archived
JavaScript to be executed as if it were not wrapped inside the anonymous block unless
it is operating in strict mode denoted by a string sentinel "use strict", found as
the first statement of the code. The "use strict" statement must be wrapped along
with the replayed JavaScript in order for replay to not be impacted. When JavaScript
code is not executed in strict mode, function definitions are lifted to the top most
scope by the JavaScript runtime, causing them to become defined on the global object
implicitly.

This implicit operation performed by the JavaScript runtime is required in order
to use the anonymous scope to override the Window and Document interfaces while
allowing all other JavaScript semantics to operate as expected in strict mode [31,
18, 12]. If an archive were to use a scope provided by a self-executing function
(Figure 119), each re-declaration (foreign substitution) and the archived JavaScript
code would be bound to scope of the function only. This would require further
modifications on the part of the archive in order to ensure replay was not impacted
which is undesirable [31].

143

Fig. 119. Archive JavaScript proxy setup function scope

As shown by the compatibility tables for the let declarator (Figure 120a), and
JavaScript proxy object (Figure 120b) the minimal browser support for this method of
performing the foreign substitution modification is FireFox v44, Chrome v49, Safari
v10, Opera v39, and Microsoft Edge v12. Note that this method for performing the
foreign substitution modification and its initial implementation were created as a part
of the research for this thesis and contributed back to Pywb on April 28, 20174. Both
Webrecorder and Pywb have since fully adopted this method and has been using it in
production since August 21, 20175. We include it in this thesis so that it may be used
by other archives to improve their replay fidelity and allow any archived JavaScript
similar to Figures 121a and 121b to be replayed without modification.

(a) Let declarator compatibility table. https://developer.mozilla.org/en-US/docs/We
b/JavaScript/Reference/Statements/let

4https://github.com/webrecorder/pywb/pull/215
5https://github.com/webrecorder/webrecorder/commit/12e2b507b88c4f0c00f29589436f
7385dc512f9a

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://github.com/webrecorder/pywb/pull/215
https://github.com/webrecorder/webrecorder/commit/12e2b507b88c4f0c00f29589436f7385dc512f9a
https://github.com/webrecorder/webrecorder/commit/12e2b507b88c4f0c00f29589436f7385dc512f9a

144

(b) JavaScript proxy compatibility table. https://developer.mozilla.org/en-US/doc
s/Web/JavaScript/Reference/Global_Objects/Proxy

Fig. 120. Browser compatibility tables for the let declarator and JavaScript Proxy
object

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy

145

var _0xc76c = [

"\x6F\x72\x69\x67\x69\x6E","\x6C\x6F\x63\x61\x74\x69\x6F\x6E",

"\x70\x75\x62\x6C\x69\x63\x6F\x2E\x70\x74",

"\x69\x6E\x64\x65\x78\x4F\x66", "\x68\x72\x65\x66",

"\x68\x74\x74\x70\x3A\x2F\x2F\x77\x77\x77\x2E\x70\x75\x62\x6C\x69\x63\x6F\x c
2E\x70\x74"↪→

];

if (window[_0xc76c[1]][_0xc76c[0]] &&

window[_0xc76c[1]][_0xc76c[0]][_0xc76c[3]](_0xc76c[2]) < 0) {

window[_0xc76c[1]][_0xc76c[4]] = _0xc76c[5];

}

// humanified

var _0xc76c = ["origin", "location", "publico.pt", "indexOf", "href",

"http://www.publico.pt"];↪→

if (window["location"]["origin"] &&

window["location"]["origin"]["indexOf"]("publico.pt") < 0) {

window["location"]["href"] = "http://www.publico.pt";

}

(a) Obfuscated location check. https://web.archive.org/web/20160514185838/https:
//www.publico.pt/

(function() {

var n = document[Object.keys((document))[0]].href

if (n !== window.location.href && n.includes("wbrc.io")) {

document.body.innerHTML = 'This site does not allow to be crawled.'

}

})()

(b) Malicious JavaScript distributed on GitHub. https://github.com/paulfkersten/ha
lt-webrecorder

Fig. 121. Location checks negated by archive controlled window proxy

https://web.archive.org/web/20160514185838/https://www.publico.pt/
https://web.archive.org/web/20160514185838/https://www.publico.pt/
https://github.com/paulfkersten/halt-webrecorder
https://github.com/paulfkersten/halt-webrecorder

146

5.3.5 REWRITER GENERATION

The process for rewriter generation discussed in this section is described in terms of
the overrides applied to the identified interfaces discussed in Section 5.3.3 rather than
implementation backing the modifications for each interface. We choose to describe
the rewriter generation process in this manner because the de facto implementation
for client-side rewriting libraries already exists, Pywb’s and Webrecorder’s Wombat.js,
and assume the following:

1. The rewriter generator will be generating JavaScript that follows the convention
set by the de facto implementation.

2. The rewriter generator knows how to convert the identifiers for interfaces that
are HTML elements to their server-side equivalent (Table 9).

3. The rewriter generator knows how to convert the attributes of the CSSStyleDec-
laration interface to their server-side equivalents (Figures 73 and 72).

4. The rewriter generator knows how to generate the appropriate rewriting function-
ality client-side for each of the identified interfaces based of off the information
included with each interface and how Web IDL maps to JavaScript (Sections
5.2, 5.3.1, and 5.3.2).

5. The rewriter generator understands the inheritance hierarchy and exposed
location information included with each interface (Sections 5.3.1 and 5.3.2).

6. The rewriter generator knows how to generate the override modifications dis-
cussed in Section 5.3.3 in JavaScript.

The overall process for generation of the client-side rewriter (Algorithm 5) uses yield
to denote a function which generates JavaScript code and operates as follows. For
each of the identified interfaces, if it inherits from HTMLElement, the patch override
is generated for each of its attributes and if the interface had a named constructor
generate an extend override is generated. If the interface is a special check (Table 11),
the overrides generated are determined by the interface’s identifier (Algorithm 6). The
Window interface generates the replace override, the Document interface generates
the replace plus patch override, the Location interfaces has the foreign substitution

override generated, and for all other special check interfaces, the patch override is
generated. If the interface is neither an HTML element or a special check but is
a function object, the extend override is generated, otherwise for each of its non-
unforgeable attributes and operations, the replace plus patch override is generated

147

(Algorithm 7). The full implementation of this algorithm and the algorithm described
in Subsection 5.3.2 has been made available on Github6.

Algorithm 5 Rewriter Generation
1: for each interface ∈ found do
2: if inheritsFromHTMLElement(interface) then
3: for each attr ∈ interface.attributes do
4: yield PatchAttr(interface, attr)

5: if interface.namedConstructor 6= Nil then
6: yield ExtendNamed(interface, interface.namedConstructor)

7: else if isSpecialCheck(inteface) then
8: yield GenerateSpecialCheck(inteface)
9: else

10: yield GenerateNoneElementNoneSpecialCheck(interface)

Algorithm 6 GenerateSpecialCheck
1: if interface.identifier == Window then
2: for each attr ∈ interface.attributes do
3: yield ReplaceAttr(interface,attr)

4: for each operation ∈ interface.operations do
5: yield ReplaceOperation(interface,operation)

6: else if interface.identifier == Document then
7: for each attr ∈ interface.attributes do
8: yield ReplacePlusPatchAttr(interface, attr)

9: for each operation ∈ interface.operations do
10: yield ReplacePlusPatchOperation(interface, operation)

11: else if interface.identifier == Location then
12: yield ForeignSubstitution(interface)
13: else
14: for each attr ∈ interface.attributes do
15: yield PatchAttribute(interface, attr)

16: for each operation ∈ interface.operations do
17: yield PatchOperation(interface, operation)

6https://github.com/N0taN3rd/Emu

https://github.com/N0taN3rd/Emu

148

Algorithm 7 GenerateNoneElementNoneSpecialCheck
1: if interface.constructor 6= Nil ∨ interface.hadConstructor then
2: yield Extend(interface)
3: else
4: for each operation ∈ interface.operations do
5: if !operation.unforgable then
6: yield ReplacePlusPatchOperation(interface, operation)

7: for each attribute ∈ interface.attributes do
8: if !attribute.unforgable then
9: yield ReplacePlusPatchAttribute(interface, attribute)

5.4 EVALUATION

In this section, we evaluate the effectiveness of using a generalized client-side
rewriter library generated using the means described in Section 5.3 to augment
server-side rewriting for archives currently not using client-side rewriting, namely the
Internet Archive. The hypotheses of this evaluation are as follows:

H1 By using client-side rewriting, the number of requests made by a composite
memento would increase when replayed from the Wayback Machine, ReqCS >

Req

H2 By using client-side rewriting, the number of requests blocked by the content
security policy of the Wayback Machine would decrease, BlkReq > BlkReqCS

H3 Additionally, by using client-side rewriting, we would expect to see a decrease in
the number of requests made by some composite mementos due to the archived
JavaScript operating on rewritten URI-Rs rather than un-rewritten URI-Rs,
which are blocked and do not receive a HTTP response

We retrieved the TimeMaps for the web pages listed in the June 2017 Alexa top
1,000,0007 most visited websites and selected the first 700 pages from the top 3,000
pages that had a capture from the Internet Archive between June 1 and June 30,
20178 which were not which the home pages for Google or Facebook. If a page did
not have a capture between June 1 and June 30, 2017, we selected the latest capture
7http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
8https://n0tan3rd.github.io/quickExploreCrawledData/

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://n0tan3rd.github.io/quickExploreCrawledData/

149

that the Internet Archive had. We then pre-crawled each archived web page replayed
from the Wayback Machine using the Google Chrome browser in order to resolve any
URI-Ms which were archived 3xx, replacing redirecting the URI-M with the URI-M
redirected to until a final non-redirecting URI-M was reached. If a URI-M redirected
more than 10 times or took longer than 20 seconds for the browser to navigate to the
page, it was discarded, resulting in 577 resolved URI-Ms. The temporal spread for
the 577 composite mementos crawled is shown in (Figure 122) and the distribution of
Alexa rankings for them can be seen in Figure 123. Once we had ensured all URI-Ms
were resolved and navigable the following was performed to measure the difference in
the number of requests made by the composite mementos from the Internet Archive’s
Wayback Machine with and without client-side rewriting.

Fig. 122. Temporal spread of the composite mementos crawled

150

0
2

40

50

60

70

< 100 100s 200s 300s 400s 500s 600s 700s 800s 900s 2000s
Ranking Group

C
ou

nt

Fig. 123. Alexa June 2017 rankings of the composite mementos crawled

Each page was crawled using the Google Chrome Browser controlled using the
Chrome DevTools Protocol9 four times, twice without client-side rewriting and twice
with client-side rewriting, recording the number of requests made by the composite
memento and the number of requests blocked by the Wayback Machine’s content
security policy. The crawler also recorded each console API call made, because
when the page was crawled with client-side rewriting and a rewrite occurred, the
injected client-side rewriter logged each rewrite occurring client-side using the sentinel
“REWRITE: un-rewritten-url —> rewritten-url”. This allowed us to measure the
number of client-side rewrites. The notation used throughout this evaluation when
referring to crawler recorded metrics is found in Table 14. The crawler visited each
page for a maximum of 90 seconds or until network idle was determined. The
determination for network idle was calculated by keeping track of the request and
response pairs for a page, and when there was only one in-flight request (no response)
for 3 seconds the crawler moved to the next page.
9https://chromedevtools.github.io/devtools-protocol/

https://chromedevtools.github.io/devtools-protocol/

151

Table 14
Crawler Recorded Metrics Term Definitions

Term Definition

Req Number Of Requests Made, No Client-Side Rewriting

ReqCS Number Of Requests Made, With Client-Side Rewriting

BlkReq Number Of Requests Blocked By CSP, No Client-Side Rewriting

BlkReqCS Number Of Requests Blocked By CSP With Client-Side Rewriting

RewrtCS Number Of Rewrites Occurring Client-Side

In order to ensure an accurate count of the requests made by a page with and
without client-side rewriting, we had the browser inject JavaScript code at document
load but before the embedded resources of the page crawled were evaluated that
would scroll the page at one second intervals a maximum of 25 times or until the
bottom of the page was reached. The only difference in the JavaScript code injected
into each page was the inclusion or exclusion of the generated client-side rewriter.
Also in order to ensure an accurate count of the number of rewrites that occurred
client-side, the injected client-side rewriter was configured to not rewrite URIs that
were either already rewritten or used internally by the Wayback Machine.

Once both sets of crawls had completed, we calculated the difference in the number
of requests made by each composite memento with client-side rewriting, denoted as
∆Req (Equation 1),

∆Req = ReqCS −Req (1)

and the composite memento’s difference in requests not counting those blocked by
the Wayback Machine’s CSP, denoted as ∆Req′ (Equation 2).

∆Req′= (ReqCS −BlkReqCS)− (Req −BlkReq) (2)

When crawling the composite mementos with client-side rewriting, we observed
(Table 15)

∼
∆Req = 29 and ∆Req = 77. This is similar to what was observed with the

composite mementos ∆Req′ values, with
∼

∆Req′= 39 and ∆Req′= 87. This means
that on average, 77 additional requests per composite memento were made with
client-side rewriting, and if we remove requests that were blocked by the Wayback

152

Machine’s CSP, that average increases to 87 additional requests. Remember that
each additional request corresponds to a resource that previously was unable to be
replayed from the Wayback Machine.

Table 15
Observed Request Increase, Rewrites Client-Side And Requests Blocked By CSP

With and Without Client-Side Rewriting

Observed Max Min Mean Median

∆Req 3,766 -7,984 77 29

∆Req′ 4,151 -7,983 87 39

RewrtCS 15,096 0 233 27

BlkReq 405 0 11 4

BlkReqCS 144 0 1 0

From the observed maximum and minimum increases, we see that there was at
least one page for which client-side rewriting greatly increased the number requests
made to the archive (∆Req = 3, 766 and ∆Req′= 4, 151) and one page where client-
side rewriting greatly reduced the number of requests made (∆Req = -7, 984 and
∆Req′= -7, 983). We also observed that the

∼
BlkReq value for the composite mementos

decreased from
∼

BlkReq = 4 to
∼

BlkReqCS = 0, as did the mean BlkReq value, which
decreased from BlkReq = 11 to BlkReqCS = 0. It must be noted that the injection
of the client-side rewriter did not occur for iframes created by JavaScript that set
the value of the iframe’s src attribute to “about:blank”, because the Google Chrome
browser would only inject the code into browser contexts for a real origin. Even
though the

∼
RewrtCS value for the composite mementos was 27 with RewrtCS = 233,

we observed that there were composite mementos crawled which did not require
client-side rewriting at all and this is reflected by the observed minimum BlkReq and
BlkReqCS values.

Similarly, the maximum RewrtCS value observed (RewrtCS = 15, 096) reflects
that the crawler did visit a composite memento for which client-side rewriting greatly
increased the number of requests made when replayed from the Wayback Machine.
From numbers displayed in Table 15 it would appear that all three of our hypotheses
are correct (H1, H2, and H3). But, in order to better understand the impact of

153

client-side rewriting on replaying archived web pages via the Wayback Machine,
consider Figure 124a, which displays the cumulative sum for the requests made with
(ΣReqCSC) and without (ΣReqC) client-side rewriting. The the values for ΣReqCSC

and ΣReqC do not begin to diverge with any significance until the crawler had visited
80 pages (P80), where we observed values ΣReqC = 20, 417 and ΣReqCSC = 25, 222.
At P200 we observed the values for ΣReqC and ΣReqCSC start to diverge again, with
ΣReqC = 50, 128 and ΣReqCSC = 62, 798.

(a) ΣReqC vs. ΣReqCSC

154

(b) Req vs. ReqCS (per page)

Fig. 124. Cumulative number of requests (Figure 124a) and number of requests per
page (Figure 124b) for 577 composite mementos replayed from the Internet Archive’s
Wayback Machine.

It is not until P430 (Figure 124a), where we observed any significant increase
in the values for ΣReqC with ΣReqC = 96, 194 and ΣReqCSC = 122, 267. At the end
of the crawl, the total number of requests made without client-side rewriting was
ΣReqC = 137, 071 and with client-side rewriting ΣReqCSC = 182, 122. As shown in
Figure 124a, client-side rewriting does indeed increase the overall number of requests
made by a page replayed from the Internet Archive’s Wayback Machine. By the end
of both crawls, the pages replayed with client-side rewriting made a total of 45,051
additional requests (ΣReqCSC−ΣReqC), a 32.8% increase via 134,923 rewrites which
occurred client-side (Figure 125a). But before looking more closely at the decrease in
the number of requests blocked by the Wayback Machine’s content security policy by
using client-side rewrite, consider the breakdown of which of the identified interfaces
(Tables 11, 12, and 13) were responsible for the rewrites (Figure 125a and Tables 16

155

and 17).

(a) Cumulative number of client-side rewrites

156

(a) Number of client-side rewrites client-side per page.

Fig. 126. Cumulative number of client-side rewrites (Figure 125a) and number of
client-side rewrites client-side per page (Figure 126a) for 577 composite mementos
replayed from the Internet Archive’s Wayback Machine.

157

Table 16
Interface Operation Rewrites

Interface.operation RewrtCS Count

Element.getAttribute 12,109

Element.setAttribute 3,073

Document.write 3,030

Node.appendChild 865

Node.insertBefore 836

Node.replaceChild 120

Window.fetch 92

XMLHttpRequest.open 45

History.replaceState 33

Document.writeln 30

Element.insertAdjacentHTML 8

History.pushState 2

Table 17
General Rewrites

Rewrite Where RewrtCS Count

doRewrite 94,975

rewriteElement 12,312

HTMLElement.style 2,381

HTML(Image|Source)Element.srcset 123

Using the stack traces included with each of the console API’s calls captured
by the crawler, we were able to break down the originator of the rewrites into two
categories identified as interface operations (Table 16) and general rewrites (Table 17).

158

Because the majority of the archived JavaScript had undergone a minification pro-
cess which mangled the function names (Figures 84, 90, and 92), we were unable
to concretely determine which of the identified interfaces were responsible for the
rewrite. In those cases we use the name of the generated rewriter function which
the rewrite originated from, namely doRewrite and rewriteElement (Table 17).
The doRewrite function is the root function called for all rewrites that occurred
and the rewriteElement function is responsible for rewriting instances of the El-
ement and Node interfaces (Figure 77). The getAttribute (RewrtCS = 12, 109)
and setAttribute (RewrtCS = 3, 073) operation of the Element interface and the
write operation of the Document interface (RewrtCS = 3, 030) were responsible for
the majority of the rewrites originating from an operation of an identified interface
(Table 16).

The operations of the Node interface, namely appendChild, insertBefore, and
replaceChild were responsible for the majority of remaining rewrites (Table 16).
Also of note, we were able to identify 92 rewrites occurring from the fetch op-
eration of the Window interface, 45 rewrites occurring from the open operation of
the XMLHTTPRequest interface (Figure 93) and 33 rewrites that occurred from the
replaceState operation of the History interface (Figure 95). As previously men-
tioned, we were unable to concretely identify 94, 975 rewrites (doRewrite) and 12, 312
rewrites that occurred from the rewriteElement (Table 17). The remaining rewrites
from the general rewrites category (Table 17) occurred from rewriting an instance
of the HTMLElement interfaces style attribute and the srcset attribute from the
HTMLImageElement or HTMLSourceElement interface.

As shown by Tables 16 and 17, client-side rewriting would indeed increase the
replay fidelity of the Internet Archive’s Wayback Machine, with the increase in replay
fidelity for the Wayback Machine becoming more clearly seen when considering the
cumulative number of blocked requests with (ΣBlkReqCSC) and without (ΣBlkReqC)
client-side rewriting, as shown in Figure 127a. At P100 we observed ΣBlkReqC = 1, 425
requests were blocked by the content security-policy of the Wayback Machine without
client-side rewriting with only ΣBlkReqCSC = 101 requests blocked once client-side
rewriting was applied. At P165 we observed the number of blocked requests for
pages replayed with client-side rewriting increased sharply from ΣBlkReqCSC = 184,
observed at P155 to ΣBlkReqCSC = 337.

159

(a) Cumulative number of blocked requests with and without client-side rewriting

160

(b) Number of blocked requests with and without client-side rewriting per composite
memento

Fig. 127. Cumulative number of blocked requests (Figure 127a) and number of
blocked requests per page (Figure 127b) with and without client-side rewriting for
577 composite mementos replayed from the Internet Archive’s Wayback Machine

We also observed that between P100 and P165 the number of requests blocked for
pages replayed without client-side nearly doubled from 1, 425 to 2, 533. After P165

ΣBlkReqCSC slowly increased to 847 by the end of the crawl, whereas ΣBlkReqC

increased to 6, 819. Overall, this results in an decrease of 87.5%. As shown in
Figure 127, the replay fidelity of the Internet Archive’s Wayback Machine was increased
by 5,972 requests (ΣBlkReqC − ΣBlkReqCSC) thus confirming H2.

The third hypothesis H3 is easily confirmed by considering Figure 128a, which
shows the cumulative sum of the observed total increase with and without client-side
rewriting for each page encountered in the Wayback Machine.

161

(a) Σ∆ReqC vs. Σ∆Req′C

162

(b) ∆Req vs. ∆Req′ (per page)

Fig. 128. ∆Req and ∆Req′ values for 577 composite mementos replayed from the
Internet Archive’s Wayback Machine

As you will recall from Table 15, the minimum and maximum observed in-
crease showed two extremes. The first extreme was the maximum increase in re-
quests, ∆Req = 3, 766 and ∆Req′= 4, 151 (Figure 128b) represented in Figure 128a
by the hills. The second extreme, the minimum increase (decrease) in requests,
∆Req = -7, 984 and ∆Req′= -7, 983, represented by the valleys seen in Figure 128a.
The first major increase occurs at P80 where we observed Σ∆ReqC = 4, 805 and
∆Req = 1, 063. The first major decrease occurred at P104 were we observed
Σ∆ReqC = 4, 601 and ∆Req = -2, 199 (Figure 128b) for http://web.archive.org/
web/20170626171334/https://instagram.com/ (Figure 129).

http://web.archive.org/web/20170626171334/https://instagram.com/
http://web.archive.org/web/20170626171334/https://instagram.com/

163

Fig. 129. Instagram replayed from the Internet Archive http://web.archive.org/
web/20170626171334/https://instagram.com/

The image displayed in Figure 129 was only able to be taken after stopping the
browser from loading the page because the page requires a cookie to present to be
viewed, and if it is not present the page will continually reload using the reload
operation of the Location interface (Figure 130, line 14).

http://web.archive.org/web/20170626171334/https://instagram.com/
http://web.archive.org/web/20170626171334/https://instagram.com/

164

1 function r (e, t, r) {var o = 'string' == typeof t;
2 if (!n.i(s.h)()) return void(o && (r ? t && a.a.push(t) : window.top.location = t))
3 n.i(s.o)() && (o = !1) var i = [], u = !1, l = function ()

{i.forEach(window.clearTimeout), i = []};↪→

4 ['pagehide', 'beforeunload', 'blur'].forEach(function (e) {c.a.listen(window, e, l)}), o &&
i.push(↪→

5 window.setTimeout(function () {u = !0, window.top.location = t}, 1e3)),i.push(
6 window.setTimeout(function () {u && window.location.reload()}, 2e3)),window.location =

'instagram://' + e↪→

7 }
8 d = {path: '/'};r.prototype.$LanguageSwitcherContainer1 =
9 function(e) { s()('ig_lang', e, d), window.location.reload();}

10 then(function (a) {if (!0 === a.account_created) return s({type: P, formContents: e}),
a.user_id &&↪→

11 (r.ig_userid = a.user_id), n.i(w.b)('signupSuccess', r), n.i(w.i)({
12 event_name: 'account_creation_success', contactpoint: e.emailOrPhone, contactpoint_type: i,
13 full_name: e.fullName, username: e.username, ig_userid: a.user_id ? Number(a.user_id) : void

0,↪→

14 }), window.location.href = '/#' + v.b, void window.location.reload()''
15 })

Fig. 130. Instagram archived location reloading JavaScript. http://web.archive.
org/web/20170626171334/https://instagram.com/

The next big decrease, http://web.archive.org/web/20170622232721/https:
//m.vk.com/ (Figure 131), comes at P427 where we observed Σ∆ReqC = 25, 917 and
∆Req = -7, 984 (Figure 128b) when client-side rewriting is used. This is an interesting
page as its sole purpose is to set a cookie and reload the page, which will cause the
browser to request the page with the cookie present in the HTTP headers, which was
lacking when the page was archived (Figure 132 lines 1-8).

Fig. 131. Archived page that is to just set a cookie and reload the page. http:
//web.archive.org/web/20170622232721/https://m.vk.com/

http://web.archive.org/web/20170626171334/https://instagram.com/
http://web.archive.org/web/20170626171334/https://instagram.com/
http://web.archive.org/web/20170622232721/https://m.vk.com/
http://web.archive.org/web/20170622232721/https://m.vk.com/
http://web.archive.org/web/20170622232721/https://m.vk.com/
http://web.archive.org/web/20170622232721/https://m.vk.com/

165

1 (function (k, a, d, e, f) {
2 var c = a.screen, g = c.width || 0, c = c.height || 0, n = a.devicePixelRatio || 1,
3 p = (k.cookie.match(/(^|;\s+)remixmdevice=([^;]+)/) || [])[2] || '', h = p.split('/')
4 p && g == h[0] && c == h[1] && 7 == h[3].length || (g = [g, c, n, l()].join('/'),
5 k.cookie = 'remixmdevice=; expires=' + (new Date(0)).toUTCString() + '; path=/',
6 k.cookie = 'remixmdevice='+g+'; expires='+(new Date((new Date).getTime() + 7776E6)).toUTCString()
7 +'; path=/; domain=.vk.com',location.replace(location.toString()))
8 })(document, window, 'undefined', '!', '-');
9 (function (a, d) {

10 var c = a.hash || '', b = c.substr(2),'#/' == c.substr(0, 2) && !d &&
11 (b.match(/^\/*(away|login)(\.php)?([^a-z0-9\.]|$)/) && (b = ''),
12 a.replace(a.protocol + '//' + a.host + '/' + b));
13 })(location)

Fig. 132. Cookie setting and location replacing JavaScript http://web.archive.or
g/web/20170622232721/https://m.vk.com/

Now rather than go over each major change in the difference, let us consider a
few specific pages. Recall the replay issue with the homepage of cnn.com discussed
in the introduction of this thesis (Chapter 1). This page was crawled at P308 with
∆Req = 362 when replayed with client-side rewriting. Because the generated client-
side rewriting included an override for domain attribute of the Document interface,
the page was able to be replayed from the Internet Archive’s Wayback Machine
(Figure 133).

http://web.archive.org/web/20170622232721/https://m.vk.com/
http://web.archive.org/web/20170622232721/https://m.vk.com/

166

(a) Home page of cnn.com replayed with client-side rewriting. http://web.archive.org/
web/20170626194501/http://www.cnn.com (465 requests made, 0 blocked by CSP, 4,666
rewrites client-side)

http://web.archive.org/web/20170626194501/http://www.cnn.com
http://web.archive.org/web/20170626194501/http://www.cnn.com

167

(b) Home page of cnn.com replayed without client-side rewriting. http://web.archive.or
g/web/20170626194501/http://www.cnn.com (103 requests, 3 requests blocked by CSP)

Fig. 133. The home page of cnn.com is replayable from the Internet Archives Wayback
Machinie with client-side rewriting

Even though the page is considered un-archivable (Figure 133b), 103 requests
were made by the page and only three requests were blocked by the content security
policy of the Wayback Machine. But when the page is replayed with client-side
rewriting (Figure 133a), 465 requests were made by the page, 0 requests were blocked
by the content security policy of the Wayback Machine, and 4,666 rewrites occurred
client-side.

The next notable page that saw an increase in replay fidelity was the home page
of reuters.com, crawled at P304, http://web.archive.org/web/20170626191618/
http://reuters.com/ (Figure 134).

http://web.archive.org/web/20170626194501/http://www.cnn.com
http://web.archive.org/web/20170626194501/http://www.cnn.com
http://web.archive.org/web/20170626191618/http://reuters.com/
http://web.archive.org/web/20170626191618/http://reuters.com/

168

(a) The home page of reuters.com replayed with client-side rewriting. http://web.arch
ive.org/web/20170626191618/http://reuters.com/ (699 requests, 0 blocked by CSP,
140 rewrites client-side)

http://web.archive.org/web/20170626191618/http://reuters.com/
http://web.archive.org/web/20170626191618/http://reuters.com/

169

(b) The home page of reuters.com replayed without client-side rewriting. http://web.arch
ive.org/web/20170626191618/http://reuters.com/ (520 requests, 9 blocked by CSP)

Fig. 134. The home page of reuters.com increased replay fidelity from the Internet
Archive’s Wayback Machine with client-side rewriting

http://web.archive.org/web/20170626191618/http://reuters.com/
http://web.archive.org/web/20170626191618/http://reuters.com/

170

When the home page of reuters.com was replayed without client-side rewriting,
the page made 520 requests with 9 requests blocked by the content security policy of
the Wayback Machine (Figure 134b). When the page was replayed with client-side
rewriting, 699 requests were made (∆Req = 179), with 0 blocked requests and 140
rewrites occurring client-side (Figure 134a).

Similar to the home page of reuters.com is the home page for the Chinese news site
sohu.com, crawled at P337 http://web.archive.org/web/20170626171733/http:
//www.sohu.com/ (Figure 135).

http://web.archive.org/web/20170626171733/http://www.sohu.com/
http://web.archive.org/web/20170626171733/http://www.sohu.com/

171

(a) Home page of sohu.com replayed with client-side rewriting. http://web.archive.
org/web/20170626171733/http://www.sohu.com/ (390 requests, 2 blocked by CSP, 30
rewrites client-side)

http://web.archive.org/web/20170626171733/http://www.sohu.com/
http://web.archive.org/web/20170626171733/http://www.sohu.com/

172

(b) Home page of sohu.com replayed without client-side rewriting. http://web.archive.
org/web/20170626171733/http://www.sohu.com/ (644 requests, 41 blocked by CSP)

Fig. 135. Home page of sohu.com increased replay fidelity from the Internet Archive’s
Wayback Machine with client-side rewriting

Replaying the page without client-side rewriting (Figure 135b), 644 requests were
made, with 41 requests blocked being blocked by the content security policy of the
Wayback Machine. But when the page is replayed with client-side rewriting, 390
requests were made (∆Req = -254), 2 blocked by the content security policy of the
Wayback Machine, and 30 rewrites occurred client-side (Figure 135a).

http://web.archive.org/web/20170626171733/http://www.sohu.com/
http://web.archive.org/web/20170626171733/http://www.sohu.com/

173

Finally, recall the page https://web.archive.org/web/20170209205035/http:
//www.soufeel.com/ which had three different ways of lazy loading its images
(Figures 87, 89, 91). Even though the page was not a part of the 577 pages used for
the evaluation of the generated client-side rewriting, the increase in replay fidelity is
quite noticeable.

(a) Page with three different ways of lazy loading its images replayed with client-side
rewriting. https://web.archive.org/web/20170209205035/http://www.soufeel.com/
(276 requests, 0 blocked by CSP, 162 rewrites client-side)

https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/
https://web.archive.org/web/20170209205035/http://www.soufeel.com/

174

(b) Page with three different ways of lazy loading its images replayed without client-side
rewriting. https://web.archive.org/web/20170209205035/http://www.soufeel.com/
(242 requests, 68 requests blocked by CSP)

Fig. 136. soufeel.com increased replay fidelity from the Internet Archive’s Wayback
Machine with client-side rewriting

When the page is replayed without client-side rewriting (Figure 136b), 242 requests
were made with 68 requests blocked by the content security policy of the Wayback
Machine. But when the page is replayed with client-side rewriting (Figure 136a),
the number of requests made by the page only increases by 34 for a total of 276
requests made, 0 of which were blocked by the content security policy of the Wayback
Machine, with a total of 162 rewrites occurring client-side. As shown from Figure 128
and the pages examined, H3 is confirmed.

https://web.archive.org/web/20170209205035/http://www.soufeel.com/

175

5.5 WAYBACK MACHINE BANNER VULNERABILITY

As a result of this work, we have identified two vulnerabilities for the banner
shown by Wayback Machine, arising from the usage of the extend (Figure 137) and
patch (Figure 141) overrides discussed in Subsection 5.3.3.

(a) Initial banner displayed

(b) Banner displayed after refreshing the page once

(c) Banner displayed after refreshing the page twice

Fig. 137. Malicious XMLHttpRequest targeting the banner of the Internet Archive’s
Wayback Machine, http://web.archive.org/web/20170919063834/http://www.
cs.odu.edu/∼jberlin/danger.html

The crux of the Wayback Machine’s vulnerabilities arises from the fact that the
Wayback Machine embeds the JavaScript responsible for the banners shown above
each replayed web page (toolbar.js, Figure 140) inside the body element of each page.
We can place a script tag in the head of the document containing JavaScript code
that extends the XMLHTTPRequest interface (EvilXHR) that substitutes the means
for retrieving the response body (responseText) for the request made for the total
captures with values computed by the attacking code (Figure 138). The results of
this attack are seen in Figure 137. On the first visit (Figure 137a), EvilXHR told the
Wayback Machine’s banner code that there were 9,381,303 captures for the page
with the first capture being made on June 7, 7701 and the last capture occurring on
December 30, 2017. Refreshing the page (Figure 137b), we find that EvilXHR told the
Wayback Machine’s banner code that there were 5,487,621 captures for the page, the
first capture being made on April 1, 2091 and the last capture occurring on December
30, 2017. Refreshing the page once more (Figure 137c), we find that EvilXHR told
the Wayback Machine’s banner code that there were 11,686,956 captures for the page,
the first capture being made on December 10, 4530 and the last capture occurring on

http://web.archive.org/web/20170919063834/http://www.cs.odu.edu/~jberlin/danger.html
http://web.archive.org/web/20170919063834/http://www.cs.odu.edu/~jberlin/danger.html

176

December 30, 2017. Clearly these numbers are incorrect as the TimeMap (Figure 139)
for the page states that there are only three captures of the page with the first and
last capture being made on September 19, 2017.

Fig. 138. Embedded JavaScript delivering EvilXHR executed before Wayback Ma-
chine’s toolbar.js, http://web.archive.org/web/20170919063834/http://www.cs
.odu.edu/∼jberlin/danger.html

http://web.archive.org/web/20170919063834/http://www.cs.odu.edu/~jberlin/danger.html
http://web.archive.org/web/20170919063834/http://www.cs.odu.edu/~jberlin/danger.html

177

<http://www.cs.odu.edu/~jberlin/danger.html>; rel="original",
<http://web.archive.org/web/timemap/link/http://www.cs.odu.edu/~jberlin/danger.html>; rel="self";

type="application/link-format"; from="Tue, 19 Sep 2017 05:46:39 GMT",↪→

<http://web.archive.org>; rel="timegate",
<http://web.archive.org/web/20170919054639/http://www.cs.odu.edu/~jberlin/danger.html>; rel="first

memento"; datetime="Tue, 19 Sep 2017 05:46:39 GMT",↪→

<http://web.archive.org/web/20170919060721/http://www.cs.odu.edu/~jberlin/danger.html>; rel="memento";
datetime="Tue, 19 Sep 2017 06:07:21 GMT",↪→

<http://web.archive.org/web/20170919063834/http://www.cs.odu.edu/~jberlin/danger.html>; rel="memento";
datetime="Tue, 19 Sep 2017 06:38:34 GMT",↪→

Fig. 139. Timemap retirevied from the Wayback Machine for http://www.cs.odu.e
du/∼jberlin/danger.html

(a) XHR request created for retrieving the number of captures for the memento actually
EvilXHR

(b) The responses responseText attribute, used to retrieve JSON data about the number of
captures, is EvilXHR’s responseText

Fig. 140. Wayback Machine banner code, toolbar.js, affected by EvilXHR

http://www.cs.odu.edu/~jberlin/danger.html
http://www.cs.odu.edu/~jberlin/danger.html

178

The second vulnerability arises from the usage of the patch modification (Fig-
ure 141).

Fig. 141. Evil createElement targeting the display of the memento selection feature of
the Wayback Machine’s banner, http://web.archive.org/web/20170919220546/
http://www.cs.odu.edu/∼jberlin/danger2.html

Fig. 142. Red selection bar for choosing a different memento to view

The second targeted disruption of replay is much simpler than the first (Figures 141
and 144), as it only affects the creation of new HTML elements from JavaScript
(Figure 144). When a viewer of an archived web page replayed from the Wayback
Machine places their mouse over the black bars in the banner (Figure 137), the code
responsible for the banner (Figure 144) creates an element inside the canvas displaying
the temporal spread of the pages captures. When the banner code requests the
creation of a new element, the attacking JavaScript chooses a random HTML element
to be used (Figure 141), preventing the Wayback Machine from displaying the red

http://web.archive.org/web/20170919220546/http://www.cs.odu.edu/~jberlin/danger2.html
http://web.archive.org/web/20170919220546/http://www.cs.odu.edu/~jberlin/danger2.html

179

line seen in Figure 142. Both vulnerabilities were reported to the Internet Archive on
October 6, 2017 and have documented the existence of them on YouTube [73].

Fig. 143. Embedded JavaScript delivering evil createElement executed before
Wayback Machine’s toolbar.js, http://web.archive.org/web/20170919220546/ht
tp://www.cs.odu.edu/∼jberlin/danger2.html

(a) toolbar.js code for displaying mouse position on the banner affected by Evil
createElement

http://web.archive.org/web/20170919220546/http://www.cs.odu.edu/~jberlin/danger2.html
http://web.archive.org/web/20170919220546/http://www.cs.odu.edu/~jberlin/danger2.html

180

(b) toolbar.js code for displaying capture resource information affected by Evil
createElement

Fig. 144. Wayback Machine banner code, toolbar.js, affected by evil createElement

5.6 SUMMARY

In this chapter, we discussed in depth how to securely replay archived JavaScript by
proposing a framework for the automatic generation of client-side rewriting libraries,
defined a terminology for describing the modifications made by client-side rewriting
libraries to the JavaScript execution environment of the browser, and how archives
can reduce the amount of JavaScript rewriting required for facilitating client-side
rewriting. Also in this chapter, we evaluated the effectiveness of that client-side
rewriting in augmenting the existing server-side rewriting systems of the Internet
Archive.

Ensuring both high replay fidelity and the secure replay of archived JavaScript

181

necessarily requires an archive to employ client-side rewriting. However, this requires
archives to create their own client-side rewriting libraries and tailor them to work
with their existing server-side rewriting processes by hand. In order to mitigate the
time and labor intensive process of creating client-side rewriting libraries by hand, we
proposed a framework for their auto-generation using the definitions of the targeted
JavaScript APIs described in the Web Interface Design Language (Web IDL).

We showed how we can use the Web IDL definitions, created by the W3C for
describing the shape of the JavaScript APIs provided by the browser, and the Web IDL
to JavaScript mapping provided by the Web IDL specification in combination with the
specifications used by server-side rewriting to generate a generic, archive independent,
client-side rewriting library. In the process of describing how the automatic generation
process works, we defined a terminology for describing the modifications made by
client-side rewriting libraries to the JavaScript execution environment of the browser
(Table 18).

Due to the security constraints placed on JavaScript by the browser, web archives
that used client-side rewriting were performing server-side rewriting that incorrectly
rewrote, specific, non-URL, strings in archived JavaScript matching the JavaScript
APIs targeted by the Foreign Substation modification. We showed how this kind
of server-side rewriting is detrimental to the replay of composite mementos and
have developed a solution for this that reduces the amount of server-side rewriting
required to perform the foreign substation modification. The developed solution is a
combination of server-side and client-side rewriting that wraps the archived JavaScript
in anonymous block that provides the scope necessary to override the JavaScript
APIs targeted by the foreign substation modification using the let declarator and
the JavaScript Proxy object. Our developed solution is currently used in production
by Pywb and Webrecorder.

182

Table 18
Terms describing the modifications made to the JavaScript execution environment of

the browser by client-side rewriting libraries

Term Definition

Patch Patches the prototype object of an identified
interface that does not expose a constructor
by redefining the named properties of the
interface’s attributes and operations in order
to intercept un-rewritten URLs

Replace Replaces, shadows, the definition of an at-
tribute or operation directly on the existing
instance of the interface Window which is the
primary global execution object

Replace Plus Patch A combination of both the replace and patch

overrides applied to the interfaces that have
existing instances that are not the global ex-
ecution object

Foreign Substitution Introduces a new foreign representation of the
targeted interface

Extend Creates a new subtype of non-element inter-
faces and replaces the reference to the inter-
face on the primary global object with the
new subtype

As shown by the evaluation of our proposed framework for the auto-generation
of client-side rewriting libraries, client-side rewriting would both increase the replay
fidelity of composite mementos and replay security of JavaScript from the Internet
Archive’s Wayback Machine. When the 577 composite mementos replayed from the
Internet Archive’s Wayback Machine were crawled with client-side rewriting, we were
able to decrease the total number of requests blocked by the content security policy

183

of the Wayback Machine by 87.5% and enabled an additional 45, 051 requests to be
made (replayed) by the composite mementos, an increase of 32.8%.

We suspected that we would see a decrease in the number of requests made by a
composite memento because the archived JavaScript would be operating on URI-Ms
rather than URI-R, which are blocked and do not receive an HTTP response. We also
suspected that because the composite memento’s JavaScript was operating on URI-Rs
not URI-Ms, their replay would be impacted due to likelihood that the composite
memento’s JavaScript was configured to continually make requests for the same or
fallback resource until a HTTP response is received. Our suspicions were confirmed
when considering both the cumulative and per composite memento request deltas, as
the deltas revealed to us the extreme increases and decreases. We believe this would
be a useful technique in identifying damaged mementos at scale.

Finally, as a direct result of including the generated the client-side rewriter in
the replay of the composite mementos, we were able to make composite mementos
which were previously un-replayable, replayable again. The home page of cnn.com
became replayable again because the generated client-side rewriter applies an override
targeting the document domain issue. Any page that also suffers from the document
domain issue also becomes replayable when a client-side rewriting is used that applies
the necessary overrides for fixing that issue. We also saw a noticeable increase in replay
fidelity when the client-side rewriter was used to replay the soufeel.com memento,
the page with three different ways of lazy loading its images.

Soufeel.com and pages like it demonstrate the difficulty for web archives to keep
up with the variability in the ways attributes are used by pages to embedded URLs.
Because the Wayback Machine had not encountered a page that embedded URLs in
the set of data attributes used by soufeel.com, the Wayback Machine was unable to
rewrite those URI-Rs and thus the page appears damaged when replayed without
client-side rewriting. Client-side rewriting solves the problem of variability in knowing
which attributes are used by a page for embedding URLs, by applying overrides to
the JavaScript APIs ultimately responsible for handling URLs.

184

CHAPTER 6

CONTRIBUTIONS, FUTURE WORK, AND

CONCLUSIONS

Replay of archived web pages varies from web archive to web archive. Some web
archives choose to replay mementos using the “Wayback” model popularized by the
Internet Archive while other web archives choose to replay mementos in a manner
unique to the archive. Although a web archive maybe using the “Wayback” model of
replay, the modifications made to archived content in order to facilitate replay also
varies from the archive to archive. The advent of high fidelity replay, which introduced
and popularized client-side rewriting, brings with it modifications overriding the
fundamental JavaScript environment during replay for which there currently does not
exist a way of quantifying the override process. Because client-side rewriting modifies
the JavaScript environment and its implementation is currently tied to the archive
using client-side rewriting, there does not exist a common standard for client-side
rewriting library creation. Due to the variation in styles of replay and client-side
rewriting library implementation, the terminology for discussing the variation does
not exist and thus is it hard to describe the de facto standards for replaying mementos.

6.1 CONTRIBUTIONS

In the list below, we present the contributions of this thesis.

1. Classified and defined a terminology for the current styles of replay (Section 4.3,
Section 4.4).

2. Classified and defined a terminology for the modifications made to an archived
web page to facilitate replay (Section 4.1, Section 4.2).

3. Classified and defined a terminology for the modifications made to an archived
web page’s JavaScript in order to facilitate client-side rewriting (Subsec-
tion 5.3.4)

4. Proposed a standard and generalized method for the generation of client-side
rewriting library (Section 5).

185

5. Defined a previously non-existent combination server-side and client-side rewriter
modification that decreases the amount of modifications made to archived
JavaScript and provides an archive more control over replay (Section 5.3.3).

6. Evaluated the effectiveness that client-side rewriting would have in augmenting
already existing server-side rewriting systems of an archive (Section 5.4).

7. Identified two vulnerabilities of the Internet Archive’s Wayback Machine’s
banner arising from the same overrides used to facilitate client-side rewriting
(Section 5.5).

6.2 FUTURE WORK

Outstanding work remaining beyond the initial scope of this thesis is as follows:

• Expand on the classification of the current replay styles, in order to better
classify the replay style a web page is best suited for at archival time.

• Expand on the classification of the modifications made to a page for use in order
to determine which modifications a web page may require at archival time.

• Extend the client-side rewriter generation framework in order to be able to
facilitate identification and overrides for JavaScript specific APIs which are not
described by Web IDL, namely import("<URL>") [74].

• Expand on the crawler used in the evaluation of the generated client-side rewriter
for use in determining Memento damage [53].

6.3 CONCLUSIONS

This thesis proposes standard terminology and classification for describing the
variability inherent in the current styles of replay. By defining a standard terminology,
we can better understand the strong suits and shortcomings of the current web
archive replay infrastructure in order to improve it. To demonstrate how our proposed
standard terminology unifies the means for describing replay of an archived web
page, we examined in depth two variations of the “Wayback” style of replay and two
variations of replay for two archives not using the “Wayback” model. From the two
variations for replay using the “Wayback” model, namely the Internet Archive and
Webrecorder, we classified both the modifications made to the replayed web page and
the variations of the replay style.

186

The “Wayback” model for replay performs two primary kinds of modification,
Archival Linkage Modifications and Replay Preserving Modifications. Archival linkage
modifications, which are performed server-side, ensure that the identifiable URLs
contained in archived HTML, CSS, and JavaScript point back to archive rather than
to the live web. Replay preserving modifications, on the other hand, are modifications
which nullify the ability of certain constructs in HTML that would otherwise prevent
the archived page or its embedded resources from being replayed. Also, from the
“Wayback” model, we were able to classify two styles for “Wayback” replay, namely
Sandboxed Replay and Non-Sandboxed Replay.

Sandboxed Replay separates the replay of the archived web page from the archived
controlled portion of replay, namely the banner. Also found in the Sandboxed Replay
style is Temporal Jailing, an extension of both archival linkage modifications and
replay preserving modifications, which utilizes the JavaScript overrides from client-
side rewriting to ensure that the embedded JavaScript of an archived web page
cannot detect the page is replayed from the archive and to ensure that the embedded
JavaScript is repayable as it existed at the memento-datetime. Non-Sandboxed replay,
on the other hand, does not separate replay from the necessarily archived controlled
portion of replay (the banner), nor does it use temporal jailing, which can negatively
impact replay.

From the two variations for replay using the “Non-Wayback” model, namely
archive.is and Pastpages.com, we classified and identified both the preservation and
replay style used by them, which is called Essence Preservation. Essence preservation
preserves only what the web page looked like at preservation time and not the original
content. Pastpages.com “preserves” the web pages it is archiving by taking a screen
shot of the web page, whereas archive.is uses Archival Caricaturization, a more specific
version of essence preservation. Archival caricaturization is a process used both in
the preservation and replay for web pages that applies a derivative transformation to
the web page’s original markup such that it conforms with the presentational style
of the archive and is unrecognizable from the original. Also applied by archive.is in
its archival caricaturization process is Identity Masking, which refers to the way an
archive chooses to identify the web page and its dependent resources post-archival,
such that the original URL for the preserved content is not kept but is substituted
with a proprietary identification scheme.

This thesis also proposes a framework for the creation of client-side rewriting

187

libraries based on the standard format for describing the JavaScript APIs provided
by browser, Web IDL, which are included in the specifications used to by server-
side rewriting. By using the Web IDL definitions for the JavaScript APIs provided
by the browser, we were able to define a generalized and extensible framework for
generating client-side rewriting libraries which can be used as a drop-in augmentation
for an archive’s existing server-side rewriting and replay systems. Also, as a part
of defining the extensible framework for client-side rewriter generation, we classified
the modifications made to the replayed JavaScript by the rewriter into five types of
overrides: patch, replace, replace plus patch, foreign substitution, and extend. The
classification of the modifications made by client-side rewriting provides for archives,
which are not currently using client-side rewriting, a better understanding the process
it works in hopes they will adopt client-side rewriting in order to improve replay
fidelity.

In the process of classifying the modifications performed by client-side rewriting,
we developed a new JavaScript rewriting method for archives which use client-side
rewriting to override specific JavaScript APIs that normally could not be directly
overridden. Because those JavaScript APIs could not be directly overridden, archives
were rewriting JavaScript code that appeared to be the targeted API and in the process
were incorrectly rewriting archived JavaScript and the non-JavaScript resources
bundled with it. By using this new means, archives do not have to perform those
rewrites and thus avoid detrimentally modifying the archived JavaScript. This method
of JavaScript rewriting is currently in use by both Webrecorder and Pywb1.

In order to evaluate the effectiveness of client-side rewriting to augment the existing
server-side rewriting systems of an archive, we crawled 577 composite mementos
replayed from the Internet Archive’s Wayback Machine. We found that the generated
client-side rewriter decreased the overall amount of requests blocked by the content
security policy of the Wayback Machine by 87.5% and enabled an additional 45, 051
requests to be made (replayed) by the composite mementos, an increase of 32.8%.
The results of the evaluation showed us that client-side rewriting is indeed an effective
means for augmenting the existing server-side rewriting systems of web archives.

As a result of this thesis, we were able to make the homepage of http://cnn.com
and any other memento that suffers from the document domain issue replayable again
from the Internet Archive using the generated client-side rewriter from Section 5.4.
1https://webrecorder.github.io/2018/01/30/pywb-release.html

http://cnn.com
https://webrecorder.github.io/2018/01/30/pywb-release.html

188

We have also released the generated client-side rewriter as a FireFox2 and Chrome3

browser extension so that others may use it to improve the replay of mementos from
the Internet Archive.

One might believe that the usage of client-side rewriting is only limited to the
most dynamic of pages, but as shown by this thesis, that is not the case. Client-side
rewriting is a general solution to the increasingly difficult problems of mitigating the
impact of JavaScript on archivability, increasing users’ perception of archival quality
and ensuring the secure replay of JavaScript [53, 47, 48, 52, 55].

2https://addons.mozilla.org/en-US/firefox/addon/waybackplusplus/
3https://chrome.google.com/webstore/detail/wayback%20%20/kcpoejoblnjdkdfdnjkgcmmm
kccjjhka

https://addons.mozilla.org/en-US/firefox/addon/waybackplusplus/
https://chrome.google.com/webstore/detail/wayback%20%20/kcpoejoblnjdkdfdnjkgcmmmkccjjhka
https://chrome.google.com/webstore/detail/wayback%20%20/kcpoejoblnjdkdfdnjkgcmmmkccjjhka

189

REFERENCES

[1] W. Koehler, “Web page change and persistence—a four-year longitudinal
study”, Journal of the Association for Information Science and Technology,
vol. 53, no. 2, pp. 162–171, 2002.

[2] A. Ntoulas, J. Cho, and C. Olston, “What’s new on the web?: The evolution
of the web from a search engine perspective”, in Proceedings of the 13th ACM

International Conference on World Wide Web, 2004, pp. 1–12.

[3] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C. Mogul, “Rate of change
and other metrics: A live study of the world wide web.”, in USENIX Symposium

on Internet Technologies and Systems, vol. 119, 1997.

[4] M. Klein, The “book of the dead” corpus, http://ws-dl.blogspot.com/2011/
06/201-06-17-book-of-dead-corpus.html, 2011.

[5] M. Klein, H. V. de Sompel, R. Sanderson, H. Shankar, L. Balakireva, K. Zhou,
and R. Tobin, “Scholarly context not found: One in five articles suffers from
reference rot”, PloS one, vol. 9, no. 12, e115253, 2014.

[6] S. M. Jones, H. V. de Sompel, H. Shankar, M. Klein, R. Tobin, and C. Grover,
“Scholarly context adrift: Three out of four uri references lead to changed
content”, PloS one, vol. 11, no. 12, e0167475, 2016.

[7] E. Crook, “Web archiving in a web 2.0 world”, The Electronic Library, vol. 27,
no. 5, pp. 831–836, 2009.

[8] M. Toyoda and M. Kitsuregawa, “The history of web archiving”, Special
Centennial Issue, vol. 100, IEEE, 2012, pp. 1441–1443.

[9] J. Masanès, “Web archiving: Issues and methods”, in Web Archiving, Springer,
2006, pp. 1–53.

[10] D. Rosenthal, Harvesting and preserving the future web, http://blog.dshr.
org/2012/05/harvesting-and-preserving-future-web.html, 2012.

[11] J. Berlin, Cnn.com has been unarchivable since november 1st, 2016, http:
/ / ws - dl . blogspot . com / 2017 / 01 / 2017 - 01 - 20 - cnncom - has - been -
unarchivable.html, 2017.

http://ws-dl.blogspot.com/2011/06/201-06-17-book-of-dead-corpus.html
http://ws-dl.blogspot.com/2011/06/201-06-17-book-of-dead-corpus.html
http://blog.dshr.org/2012/05/harvesting-and-preserving-future-web.html
http://blog.dshr.org/2012/05/harvesting-and-preserving-future-web.html
http://ws-dl.blogspot.com/2017/01/2017-01-20-cnncom-has-been-unarchivable.html
http://ws-dl.blogspot.com/2017/01/2017-01-20-cnncom-has-been-unarchivable.html
http://ws-dl.blogspot.com/2017/01/2017-01-20-cnncom-has-been-unarchivable.html

190

[12] WHATWG Working Group, “Html living standard”, The Web Hypertext
Application Technology Working Group, WHATWG Living Standard, 2017.

[13] N. Freed and N. Borenstein, Multipurpose internet mail extensions (mime)

part one: Format of internet message bodies, http://tools.ietf.org/rfc/
rfc2045.txt, RFC2045, Nov. 1996.

[14] N. Freed and N. Borenstein, Multipurpose internet mail extensions (mime) part

two: Media types, http://tools.ietf.org/rfc/rfc2046.txt, RFC2046,
Nov. 1996.

[15] J. Berlin, A state of replay or location, location, location, http://ws-dl.
blogspot.com/2017/03/2017-03-09-state-of-replay-or-location.
html, 2017.

[16] E. Summers, The web as performance, https://inkdroid.org/2017/03/31/
webrecorderplayer/, 2017.

[17] C. Peterson, Web archives, performance & capture, https://medium.com/on-
archivy/web-archives-performance-capture-78f06c119850, 2015.

[18] WHATWG Working Group, “Webidl level 1”, The Web Hypertext Application
Technology Working Group, W3C Recommendation, 2017.

[19] R. Fielding and J. Reschke, Hypertext transfer protocol (http/1.1): Message

syntax and routing, http://tools.ietf.org/rfc/rfc7230.txt, RFC7230,
Jun. 2014.

[20] I. Jacobs and N. Walsh, “Architecture of the world wide web, volume one”,
W3C, Tech. Rep. W3C Recommendation 15 December 2004, 2004.

[21] T. Berners-Lee, R. Fielding, and L. Masinter, Uniform resource identifier (uri):

Generic syntax, http://tools.ietf.org/rfc/rfc3986.txt, RFC3986, Jan.
2005.

[22] E. Rescorla, Http over tls, http://tools.ietf.org/rfc/rfc2818.txt,
RFC2818, May 2000.

[23] R. Fielding and J. Reschke, Hypertext transfer protocol (http/1.1): Semantics

and content, http://tools.ietf.org/rfc/rfc7231.txt, RFC7231, Jun.
2014.

[24] R. Fielding and J. Reschke, Hypertext transfer protocol (http/1.1): Conditional

requests, http://tools.ietf.org/rfc/rfc7232.txt, RFC7232, Jun. 2014.

http://tools.ietf.org/rfc/rfc2045.txt
http://tools.ietf.org/rfc/rfc2045.txt
http://tools.ietf.org/rfc/rfc2046.txt
http://ws-dl.blogspot.com/2017/03/2017-03-09-state-of-replay-or-location.html
http://ws-dl.blogspot.com/2017/03/2017-03-09-state-of-replay-or-location.html
http://ws-dl.blogspot.com/2017/03/2017-03-09-state-of-replay-or-location.html
https://inkdroid.org/2017/03/31/webrecorderplayer/
https://inkdroid.org/2017/03/31/webrecorderplayer/
https://medium.com/on-archivy/web-archives-performance-capture-78f06c119850
https://medium.com/on-archivy/web-archives-performance-capture-78f06c119850
http://tools.ietf.org/rfc/rfc7230.txt
http://tools.ietf.org/rfc/rfc3986.txt
http://tools.ietf.org/rfc/rfc2818.txt
http://tools.ietf.org/rfc/rfc7231.txt
http://tools.ietf.org/rfc/rfc7232.txt

191

[25] S. Faulkner, A. Eicholz, T. Leithead, A. Danilo, and S. Moon, “Html5 a
vocabulary and associated apis for html and xhtml”, W3C, W3C Specification,
2014.

[26] ECMA International, “Secma-262 - ecmascript language specification”, TC39,
Tech. Rep., Sep. 2017.

[27] R. Fielding and J. Reschke, Hypertext transfer protocol (http/1.1): Authentica-

tion, http://tools.ietf.org/rfc/rfc7235.txt, RFC7235, Jun. 2014.

[28] A. Barth, Http state management mechanism, http://tools.ietf.org/rfc/
rfc6265.txt, RFC6265, Apr. 2011.

[29] M. Kruisselbrink and V. Shmyroff, “File api”, W3C, W3C Working Draft, Oct.
2017.

[30] WHATWG Working Group, “Dom living standard”, The Web Hypertext
Application Technology Working Group, WHATWG Living Standard, 2017.

[31] ECMA International, “Ecmascript® 2017 language specification”, Tech. Rep.,
2017.

[32] A. Barth, The web origin concept, http://tools.ietf.org/rfc/rfc6454.
txt, RFC6454, Dec. 2011.

[33] A. van Kesteren, “Cross-origin resource sharing”, W3C, W3C Specification,
2014.

[34] H. Van de Sompel, M. L. Nelson, R. Sanderson, L. L. Balakireva, S. Ainsworth,
and H. Shankar, “Memento: Time travel for the web”, Tech. Rep. arXiv:0911.1112,
2009.

[35] H. V. d. Sompel, M. Nelson, and R. Sanderson, Http framework for time-based

access to resource states – memento, http://tools.ietf.org/rfc/rfc7089.
txt, RFC7089, Dec. 2013.

[36] M. L. Nelson, Memento-datetime is not last-modified, http://ws-dl.blogspo
t.com/2010/11/2010-11-05-memento-datetime-is-not-last.html, 2010.

[37] S. G. Ainsworth, M. L. Nelson, and H. Van de Sompel, “A framework for eval-
uation of composite memento temporal coherence”, Old Dominion University,
Tech. Rep. arXiv:1402.0928, Feb. 2014.

http://tools.ietf.org/rfc/rfc7235.txt
http://tools.ietf.org/rfc/rfc6265.txt
http://tools.ietf.org/rfc/rfc6265.txt
http://tools.ietf.org/rfc/rfc6454.txt
http://tools.ietf.org/rfc/rfc6454.txt
http://tools.ietf.org/rfc/rfc7089.txt
http://tools.ietf.org/rfc/rfc7089.txt
http://ws-dl.blogspot.com/2010/11/2010-11-05-memento-datetime-is-not-last.html
http://ws-dl.blogspot.com/2010/11/2010-11-05-memento-datetime-is-not-last.html

192

[38] K. C. Negulescu, Web archiving @ the internet archive, http://www.digitalp
reservation.gov/meetings/documents/ndiipp10/NDIIPP072110FinalIA.
ppt, 2010.

[39] G. Mohr, M. Stack, I. Ranitovic, D. Avery, and M. Kimpton, “An introduction
to heritrix an open source archival quality web crawler”, in In IWAW’04, 4th

International Web Archiving Workshop, Springer Press, 2004.

[40] H. Stern, Fetch chain processors, https://webarchive.jira.com/wiki/
display/Heritrix/Fetch+Chain+Processors, 2011.

[41] ISO 28500, WARC (Web ARChive) file format, http://www.digitalpreserv
ation.gov/formats/fdd/fdd000236.shtml, Aug. 2009.

[42] B. Tofel, “Wayback for accessing web archives”, in 7th International Web

Archiving Workshop (IWAW’07), 2007.

[43] R. Fox, “Turning back 10 billion (web) pages of time”, Communications of the

ACM, vol. 44, pp. 9–10, 2001.

[44] J. F. Brunelle, Zombies in the archives, http://ws-dl.blogspot.com/2012/
10/2012-10-10-zombies-in-archives.html, 2012.

[45] M. Kelly, M. L. Nelson, and M. C. Weigle, “The archival acid test: Evaluating
archive performance on advanced HTML and JavaScript”, in Proceedings of the

14th ACM/IEEE-CS Joint Conference on Digital Libraries, 2014, pp. 25–28.

[46] M. Nottingham, Uri design and ownership, http://tools.ietf.org/rfc/
rfc7320.txt, RFC7320, Jul. 2014.

[47] J. F. Brunelle, M. Kelly, M. C. Weigle, and M. L. Nelson, “The impact of
javascript on archivability”, International Journal of Digital Libraries (IJDL),
Jan. 2015. doi: 10.1007/s00799-015-0140-8.

[48] M. Kelly, J. F. Brunelle, M. C. Weigle, and M. L. Nelson, “On the change in
archivability of websites over time”, in International Conference on Theory and

Practice of Digital Libraries, Springer, 2013, pp. 35–47.

[49] S. Alam, M. Kelly, M. C. Weigle, and M. L. Nelson, “Client-side reconstruc-
tion of composite mementos using serviceworker”, in Proceedings of the 17th

ACM/IEEE-CS Joint Conference on Digital Libraries, 2017, pp. 1–4.

[50] M. L. Nelson, ‘‘refresh” for zombies, time jumps, http://ws-dl.blogspot.
com/2014/07/2014-07-14-refresh-for-zombies-time.html, 2014.

http://www.digitalpreservation.gov/meetings/documents/ndiipp10/NDIIPP072110FinalIA.ppt
http://www.digitalpreservation.gov/meetings/documents/ndiipp10/NDIIPP072110FinalIA.ppt
http://www.digitalpreservation.gov/meetings/documents/ndiipp10/NDIIPP072110FinalIA.ppt
https://webarchive.jira.com/wiki/display/Heritrix/Fetch+Chain+Processors
https://webarchive.jira.com/wiki/display/Heritrix/Fetch+Chain+Processors
http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml
http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml
http://ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
http://ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
http://tools.ietf.org/rfc/rfc7320.txt
http://tools.ietf.org/rfc/rfc7320.txt
https://doi.org/10.1007/s00799-015-0140-8
http://ws-dl.blogspot.com/2014/07/2014-07-14-refresh-for-zombies-time.html
http://ws-dl.blogspot.com/2014/07/2014-07-14-refresh-for-zombies-time.html

193

[51] K. Leetaru, How much of the internet does the wayback machine really archive?,
http://www.forbes.com/sites/kalevleetaru/2015/11/16/how-much-of-
the-internet-does-the-wayback-machine-really-archive/, 2015.

[52] K. Leetaru, Are web archives failing the modern web: Video, social media,

dynamic pages and the mobile web, https://www.forbes.com/sites/kal
evleetaru/2017/02/24/are-web-archives-failing-the-modern-web-
video-social-media-dynamic-pages-and-the-mobile-web/, 2017.

[53] J. F. Brunelle, M. Kelly, H. SalahEldeen, M. C. Weigle, and M. L. Nelson, “Not
all mementos are created equal: Measuring the impact of missing resources”, in
Proceedings of ACM/IEEE Digital Libraries (DL), London, 2014, pp. 321–330.

[54] J. Brunelle, M. Kelly, H. SalahEldeen, M. C. Weigle, and M. L. Nelson, “Not
all mementos are created equal: Measuring the impact of missing resources”,
International Journal of Digital Libraries (IJDL), May 2015. doi: 10.1007/
s00799-015-0150-6.

[55] A. Lerner, T. Kohno, and F. Roesner, “Rewriting history: Changing the archived
web from the present”, in Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, ACM, 2017, pp. 1741–1755.

[56] J. Cushman and I. Kreymer, Thinking like a hacker: Security Considerations for

High-Fidelity Web Archives, Presented at International Internet Preservation
Consortium (IIPC) Web Archiving Conference (WAC) 2017, Jun. 2017.

[57] Taft, E. and Pravetz, J. and Zilles, S. and Masinter, L., The application/pdf

media type, http://tools.ietf.org/rfc/rfc3778.txt, RFC3778, May
2004.

[58] N. Freed, J. Klensin, and T. Hansen, Media type specifications and registration

procedures, http://tools.ietf.org/rfc/rfc6838.txt, RFC6838, Jan.
2013.

[59] M. Ohye and J. Kupke, The canonical link relation, http://tools.ietf.org/
rfc/rfc6596.txt, RFC6596, Apr. 2012.

[60] I. Grigorik, “Resource hints”, W3C, W3C Working Draft, 2018.

[61] I. J. Dave Raggett Arnaud Le Hors, “Html 4.01 specification”, W3C, W3C
Specification, 1999.

http://www.forbes.com/sites/kalevleetaru/2015/11/16/how-much-of-the-internet-does-the-wayback-machine-really-archive/
http://www.forbes.com/sites/kalevleetaru/2015/11/16/how-much-of-the-internet-does-the-wayback-machine-really-archive/
https://www.forbes.com/sites/kalevleetaru/2017/02/24/are-web-archives-failing-the-modern-web-video-social-media-dynamic-pages-and-the-mobile-web/
https://www.forbes.com/sites/kalevleetaru/2017/02/24/are-web-archives-failing-the-modern-web-video-social-media-dynamic-pages-and-the-mobile-web/
https://www.forbes.com/sites/kalevleetaru/2017/02/24/are-web-archives-failing-the-modern-web-video-social-media-dynamic-pages-and-the-mobile-web/
https://doi.org/10.1007/s00799-015-0150-6
https://doi.org/10.1007/s00799-015-0150-6
http://tools.ietf.org/rfc/rfc3778.txt
http://tools.ietf.org/rfc/rfc6838.txt
http://tools.ietf.org/rfc/rfc6596.txt
http://tools.ietf.org/rfc/rfc6596.txt

194

[62] M. West, A. Barth, and D. Veditz, “Content security policy level 2”, W3C,
W3C Recommendation, Dec. 2016.

[63] S. G. Ainsworth, Original header replay considered coherent, http://ws-
dl.blogspot.com/2015/08/2015-08-28-original-header-replay.html,
2015.

[64] J. Weinberger, F. Braun, D. Akhawe, and F. Marier, “Subresource integrity”,
W3C, W3C Recommendation, Jun. 2016.

[65] C. Reis, A. Barth, and C. Pizano, “Browser security: Lessons from google
chrome”, Communications of the ACM, vol. 52, no. 8, pp. 45–49, 2009.

[66] A. Barth, C. Reis, C. Jackson, and G. C. Team, The security architecture of

the chromium browser, https://seclab.stanford.edu/websec/chromium/
chromium-security-architecture.pdf, 2008.

[67] M. L. Nelson,Game walkthroughs as a metaphor for web preservation, http://ws-
dl.blogspot.com/2013/05/2013-05-25-game-walkthroughs-as.html, 2013.

[68] WHATWG Working Group, “Fetch living standard”, The Web Hypertext
Application Technology Working Group, WHATWG Living Standard, 2017.

[69] D. G. Simon Pieters, “Css object model (cssom)”, W3C Working Draft, 2017.

[70] “Dom parsing and serialization”, Web Platform Working Group, W3C Specifi-
cation, 2017.

[71] T. Nadeau, A. Koushik, and R. Cetin, Multiprotocol label switching (mpls)

traffic engineering management information base for fast reroute, http://
tools.ietf.org/rfc/rfc6445.txt, RFC6445, Nov. 2011.

[72] A. van Kesteren, Defining the windowproxy, window, and location objects,
https://blog.whatwg.org/windowproxy-window-and-location, 2016.

[73] J. Berlin, Controlling the information displayed in the banner of the internet

archive’s wayback machine, https://www.youtube.com/watch?v=6G1TSF2Lb
PQ, 2018.

[74] WHATWG Working Group, Loader, a collection of interesting ideas, https:
//whatwg.github.io/loader/, 2016.

http://ws-dl.blogspot.com/2015/08/2015-08-28-original-header-replay.html
http://ws-dl.blogspot.com/2015/08/2015-08-28-original-header-replay.html
https://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
https://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://tools.ietf.org/rfc/rfc6445.txt
http://tools.ietf.org/rfc/rfc6445.txt
https://blog.whatwg.org/windowproxy-window-and-location
https://www.youtube.com/watch?v=6G1TSF2LbPQ
https://www.youtube.com/watch?v=6G1TSF2LbPQ
https://whatwg.github.io/loader/
https://whatwg.github.io/loader/

195

APPENDIX A

JAVASCRIPT FOR THE PRESERVATION AND REPLAY

OF THE MODERN WEB

Below is the client-side rewriting library, ait-client-rewrite.js, used by Archive-It as of
April 13, 2018.

1 //==
2 // Wayback Common JS Library
3 //==
4 var WB_wombat_replayServer;
5 var WB_wombat_replayPrefix;
6 var WB_wombat_replayDatePrefix;
7 var WB_wombat_captureDatePart;
8 var WB_wombat_origHost;
9 //Location objects

10 var WB_wombat_self_location;
11 var WB_wombat_top_location;
12 var WB_wombat_opener_location;
13 // Domain
14 var WB_wombat_document_domain;
15 //function to allow jquery expando requests (http://stackoverflow.com/questions/7200722/jquery-expando-properties),
16 //which return a function that has its name defined in a parameter of the request, to be executed. we rewrite the function call

elsewhere (see↪→
17 //ArchiveUrlReplay.xml) and then define it here to ensure it exists. expando function include current timestamp so we can never

replay them without↪→
18 //overriding default expando behavior
19 function jQueryREWRITTEN_BY_WAYBACK(){
20 o=arguments;
21 }
22 function WB_Get_Domain(href) {
23 var a = document.createElement('a');
24 a.href = href;
25 return a.protocol + "//" + a.hostname;
26 }
27 function WB_StripPort(str)
28 {
29 var hostWithPort = str.match(/^http:\/\/[\w\d@.-]+:\d+/);
30 if (hostWithPort) {
31 var hostName = hostWithPort[0].substr(0, hostWithPort[0].lastIndexOf(':'));
32 return hostName + str.substr(hostWithPort[0].length);
33 }
34 return str;
35 }
36 function WB_IsHostUrl(str)
37 {
38 // Good guess that's its a hostname
39 if (str.indexOf("www.") == 0) {
40 return true;
41 }
42 // hostname:port (port required)
43 var matches = str.match(/^[\w-]+(\.[\w-_]+)+(:\d+)(\/|$)/);
44 if (matches && (matches[0].length < 64)) {
45 return true;
46 }
47 // ip:port
48 matches = str.match(/^\d+\.\d+\.\d+\.\d+(:\d+)?(\/|$)/);

196

49 if (matches && (matches[0].length < 64)) {
50 return true;
51 }
52 return false;
53 }
54 function WB_RewriteUrl(url)
55 {
56 var httpPrefix = "http://";
57 var httpsPrefix = "https://";
58 if (!url) {
59 return url;
60 }
61 // If not dealing with a string, get string version and try to convert it
62 if ((typeof url) != "string") {
63 url = url.toString();
64 }
65 // If starts with prefix, no rewriting needed
66 // Only check replay prefix (no date) as date may be different for each capture
67 if (url.indexOf(WB_wombat_replayServer) == 0) {
68 return url;
69 }
70 // If server relative url, add prefix and original host
71 if (WB_IsRelativeUrl(url)) {
72 // Already a relative url, don't make any changes!
73 if (url.indexOf(WB_wombat_captureDatePart) >= 0) {
74 return url;
75 }
76 return WB_wombat_replayDatePrefix + WB_wombat_origHost + url;
77 }
78 // If full url starting with http:// add http prefix
79 if (url.indexOf(httpPrefix) == 0) {
80 return WB_wombat_replayDatePrefix.replace("https://", "http://") + url;
81 }
82 // If full url starting with https:// add https prefix
83 if (url.indexOf(httpsPrefix) == 0) {
84 return WB_wombat_replayDatePrefix.replace("http://", "https://") + url;
85 }
86 // May or may not be a hostname, call function to determine
87 // If it is, add the prefix and make sure port is removed
88 if (WB_IsHostUrl(url)) {
89 return WB_wombat_replayDatePrefix + httpPrefix + url;
90 }
91 return url;
92 }
93 //determine if url is server or path relative or not
94 function WB_IsRelativeUrl(url) {
95 if (url) {
96 var urlType = (typeof url);
97 if (urlType == "string") {
98 return (url.charAt(0) == "/" || url.charAt(0) == ".");
99 } else if (urlType == "object") {

100 return (url.href && (url.href.charAt(0) == "/" || url.charAt(0) == "."));
101 }
102 }
103 return false;
104 }
105 //http://wayback.archive-it.org/1000000016/20140801164720/http://www.w3.org/2000/svg -> http://www.w3.org/2000/svg - for

https://webarchive.jira.com/browse/ARI-3906↪→
106 function WB_UnRewriteUrl(url) {
107 return WB_ExtractOrig(url);
108 }
109 function WB_CopyObjectFields(obj)
110 {
111 var newObj = {};
112 for (prop in obj) {
113 if ((typeof obj[prop]) != "function") {
114 newObj[prop] = obj[prop];
115 }
116 }
117 return newObj;

197

118 }
119 function WB_ExtractOrigNoProtocol(href) {
120 var lHref = WB_ExtractOrig(href);
121 if (lHref.slice(0, 5) == "http:") {
122 return lHref.slice(5);
123 }
124 else if (lHref.slice(0, 6) == "https:") {
125 return lHref.slice(6);
126 }
127 return lHref;
128 }
129 function WB_ExtractOrig(href)
130 {
131 if (!href) {
132 return "";
133 }
134 href = href.toString();
135 var index = href.indexOf("/http", 1);
136 if (index > 0) {
137 return href.substr(index + 1);
138 } else {
139 return href;
140 }
141 }
142 //solution from http://stackoverflow.com/questions/4497531/javascript-get-url-path
143 function WB_GetPath(href) {
144 var a = document.createElement('a');
145 a.href = href;
146 return a.pathname;
147 }
148 //solution from http://stackoverflow.com/questions/4497531/javascript-get-url-path
149 //specifically, user stecb's answer
150 function WB_ExtractOrigPathname(href) {
151 var origHref = WB_ExtractOrig(href);
152 return WB_GetPath(origHref);
153 }
154 function WB_ExtractOrigPathnameAndQueryString(href) {
155 var origHref = WB_ExtractOrig(href);
156 var a = document.createElement('a');
157 a.href = origHref;
158 if (WB_EndsWith(origHref, "?")) {
159 return a.pathname + "?";
160 }
161 return a.pathname + a.search;
162 }
163 function WB_EndsWith(str, endingStr) {
164 return str.indexOf(endingStr, str.length - endingStr.length) !== -1;
165 }
166 //solution from http://stackoverflow.com/questions/4497531/javascript-get-url-path
167 function WB_ExtractOrigSearch(href) {
168 var origHref = WB_ExtractOrig(href);
169 var a = document.createElement('a');
170 a.href = origHref;
171 return a.search;
172 }
173 // rewrite orig href to https if it is http and the page is being loaded as https
174 // this is to deal with Firefox mixed content security which restricts loading http urls from a page
175 // loaded over https
176 function WB_fixProtocol(href) {
177 if (!href) {
178 return "";
179 }
180 if (location.protocol == "https:") {
181 if (href.slice(0, 5) == "http:") {
182 href = "https:" + href.slice(5);
183 }
184
185 }
186 return href;
187 }

198

188 function WB_CopyLocationObj(loc)
189 {
190 var newLoc = WB_CopyObjectFields(loc);
191 newLoc._origLoc = loc;
192 newLoc._origHref = loc.href;
193 // Rewrite replace and assign functions
194 newLoc.replace = function(url) { this._origLoc.replace(WB_RewriteUrl(url)); };
195 newLoc.assign = function(url) { this._origLoc.assign(WB_RewriteUrl(url)); };
196 newLoc.reload = function() { this._origLoc.reload(); };
197 newLoc.href = WB_fixProtocol(WB_ExtractOrig(newLoc._origHref));
198 newLoc.pathname = WB_ExtractOrigPathname(newLoc._origHref);
199 newLoc.search = WB_ExtractOrigSearch(newLoc._origHref);
200 newLoc.toString = function() { return this.href; };
201 newLoc.hash = loc.hash;
202 newLoc.lasthash = loc.hash;
203 return newLoc;
204 }
205
206 //override createElementNS JS function in order to ensure namespace is correct - for https://webarchive.jira.com/browse/ARI-3906
207 function WB_CreateElementNS(namespace, elementName) {
208 namespace = WB_UnRewriteUrl(namespace);
209 return document.createElementNS(namespace, elementName);
210 }
211
212 function WB_wombat_updateLoc(reqHref, origHref, loc, wbSearchLoc)
213 {
214 if (reqHref) {
215 if (WB_IsRelativeUrl(reqHref)) {
216 //for relative paths, just compare the paths + query string, not full urls
217 if (WB_ExtractOrigPathnameAndQueryString(origHref) != reqHref) {
218 loc.href = WB_RewriteUrl(reqHref);
219 return true;
220 }
221 }
222 else {
223 //for full urls, compare everything but leading protocol (http or https)
224 if (WB_ExtractOrigNoProtocol(origHref) != WB_ExtractOrigNoProtocol(reqHref)) {
225 loc.href = WB_RewriteUrl(reqHref);
226 return true;
227 }
228 }
229 }
230 if (wbSearchLoc) {
231 if (loc.search != wbSearchLoc) {
232 loc.search = wbSearchLoc;
233 }
234 }
235 return false;
236 }
237
238 function WB_wombat_checkLocationChange(wbLoc, isTop)
239 {
240 var has_updated = null;
241 var locType = (typeof wbLoc);
242 var location = (isTop ? window.top.location : window.location);
243 // String has been assigned to location, so assign it
244 if (locType == "string") {
245 has_updated = WB_wombat_updateLoc(wbLoc, location.href, location);
246 } else if (locType == "object") {
247 has_updated = WB_wombat_updateLoc(wbLoc.href, wbLoc._origHref, location, wbLoc.search);
248 }
249 if (WB_wombat_self_location.hash != WB_wombat_self_location.lasthash) {
250 //if wombat hash has been updated, make sure it's in sync with window.location hash
251 window.location.hash = WB_wombat_self_location.hash;
252 }
253 else if (window.location.hash != WB_wombat_self_location.hash) {
254 //if window.location.hash has been updated before wombat hash, handle this here
255 WB_wombat_self_location.hash = window.location.hash;
256 }
257 WB_wombat_self_location.lasthash = WB_wombat_self_location.hash;

199

258 return has_updated;
259 }
260
261 var wombat_updating = false;
262
263 function WB_wombat_checkLocations()
264 {
265 if (wombat_updating) {
266 return false;
267 }
268 wombat_updating = true;
269 var updated_self = WB_wombat_checkLocationChange(document.WB_wombat_self_location, false);
270 if (!updated_self) {
271 updated_self = WB_wombat_checkLocationChange(WB_wombat_self_location, false);
272 }
273 var updated_top = null;
274 if (document.WB_wombat_self_location != WB_wombat_top_location) {
275 updated_top = WB_wombat_checkLocationChange(WB_wombat_top_location, true);
276 }
277 if (!updated_top) {
278 if (WB_wombat_self_location != WB_wombat_top_location) {
279 updated_top = WB_wombat_checkLocationChange(WB_wombat_top_location, true);
280 }
281 }
282 //for https://webarchive.jira.com/browse/ARI-3955
283 if (updated_self || updated_top) {
284 return false;
285 }
286 wombat_updating = false;
287 }
288
289 //copied from https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Storage
290 function WB_wombat_Override_LocalStorage() {
291 Object.defineProperty(window, "localStorage", new (function () {
292 var aKeys = [], oStorage = {};
293 Object.defineProperty(oStorage, "getItem", {
294 value: function (sKey) { return sKey ? (this[sKey] ? this[sKey] : null) : null; },
295 writable: false,
296 configurable: false,
297 enumerable: false
298 });
299 Object.defineProperty(oStorage, "key", {
300 value: function (nKeyId) { return aKeys[nKeyId]; },
301 writable: false,
302 configurable: false,
303 enumerable: false
304 });
305 Object.defineProperty(oStorage, "setItem", {
306 value: function (sKey, sValue) {
307 if(!sKey) { return; }
308 document.cookie = escape(sKey) + "=" + escape(sValue) + "; expires=Tue, 19 Jan 2038 03:14:07 GMT; path=/";
309 },
310 writable: false,
311 configurable: false,
312 enumerable: false
313 });
314 Object.defineProperty(oStorage, "length", {
315 get: function () { return aKeys.length; },
316 configurable: false,
317 enumerable: false
318 });
319 Object.defineProperty(oStorage, "removeItem", {
320 value: function (sKey) {
321 if(!sKey) { return; }
322 document.cookie = escape(sKey) + "=; expires=Thu, 01 Jan 1970 00:00:00 GMT; path=/";
323 },
324 writable: false,
325 configurable: false,
326 enumerable: false
327 });

200

328 this.get = function () {
329 var iThisIndx;
330 for (var sKey in oStorage) {
331 iThisIndx = aKeys.indexOf(sKey);
332 if (iThisIndx === -1) { oStorage.setItem(sKey, oStorage[sKey]); }
333 else { aKeys.splice(iThisIndx, 1); }
334 delete oStorage[sKey];
335 }
336 for (aKeys; aKeys.length > 0; aKeys.splice(0, 1)) { oStorage.removeItem(aKeys[0]); }
337 for (var aCouple, iKey, nIdx = 0, aCouples = document.cookie.split(/\s*;\s*/); nIdx < aCouples.length; nIdx++) {
338 aCouple = aCouples[nIdx].split(/\s*=\s*/);
339 if (aCouple.length > 1) {
340 oStorage[iKey = unescape(aCouple[0])] = unescape(aCouple[1]);
341 aKeys.push(iKey);
342 }
343 }
344 return oStorage;
345 };
346 this.configurable = false;
347 this.enumerable = true;
348 })());
349 }
350
351 function WB_wombat_Init(replayPrefix, captureDate, origHost)
352 {
353 WB_wombat_replayServer = location.protocol + "//" + location.host;
354 try {
355 var collectionId = /https?:\/\/wayback\..*archive-it\.org\/([\d]+(?:-test)?)/.exec(replayPrefix)[1];
356 WB_wombat_replayPrefix = WB_wombat_replayServer + "/" + collectionId + "/";
357 }
358 catch (exc) {
359 WB_wombat_replayPrefix = replayPrefix;
360 }
361 WB_wombat_replayDatePrefix = WB_wombat_replayPrefix + captureDate + "/";
362 WB_wombat_captureDatePart = "/" + captureDate + "/";
363 WB_wombat_origHost = "http://" + origHost;
364 WB_wombat_self_location = WB_CopyLocationObj(window.self.location);
365 WB_wombat_top_location = ((window.self.location != window.top.location) ? WB_CopyLocationObj(window.top.location) :

WB_wombat_self_location);↪→
366 WB_wombat_opener_location = null;
367 //try catch for https://webarchive.jira.com/browse/ARI-3715
368 try {
369 WB_wombat_opener_location = (window.opener ? WB_CopyLocationObj(window.opener.location) : null);
370 }
371 catch (err) {
372 console.log(err);
373 }
374 //WB_wombat_document_domain = document.domain;
375 WB_wombat_document_domain = origHost;
376 // For https://webarchive.jira.com/browse/ARI-3985
377 document.WB_wombat_self_location = WB_wombat_self_location;
378 //override window.open function so that a new window will have WB_wombat_self_location as a member since wombat
379 //rewriting may change window.location to window.WB_wombat_self_location
380 //for https://webarchive.jira.com/browse/ARI-4006
381 var originalOpenFunction = window.open;
382 window.open = function (url, windowName, windowFeatures) {
383 var newWindow = originalOpenFunction(url, windowName, windowFeatures);
384 newWindow.WB_wombat_self_location = newWindow.self.location;
385 return newWindow;
386 };
387 var originalHistoryPushStateFunction = history.pushState;
388 //override pushState and replaceState history functions so we can retain the correct archival format

<timestamp>/<collid>/livesiteurl in the browsers location bar↪→
389 //if the site is using these methods. for https://webarchive.jira.com/browse/ARI-4068
390 history.pushState = function (stateObject, title, url) {
391 var rewrittenUrl = null;
392 if (url) {
393 rewrittenUrl = WB_GetPath(WB_RewriteUrl(WB_GetPath(url))) + WB_ExtractOrigSearch(url);
394 }
395 if (stateObject) {

201

396 if (stateObject.path) {
397 stateObject.path = WB_GetPath(WB_RewriteUrl(WB_GetPath(stateObject.path))) + WB_ExtractOrigSearch(stateObject.path);
398 }
399 }
400 originalHistoryPushStateFunction.call(history, stateObject, title, rewrittenUrl);
401 };
402 var originalHistoryReplaceStateFunction = history.replaceState;
403 history.replaceState = function (stateObject, title, url) {
404 var rewrittenUrl = null;
405 if (url) {
406 rewrittenUrl = WB_GetPath(WB_RewriteUrl(WB_GetPath(url))) + WB_ExtractOrigSearch(url);
407 }
408 if (stateObject) {
409 if (stateObject.path) {
410 stateObject.path = WB_GetPath(WB_RewriteUrl(WB_GetPath(stateObject.path))) + WB_ExtractOrigSearch(stateObject.path);
411 }
412 }
413 originalHistoryReplaceStateFunction.call(history, stateObject, title, rewrittenUrl);
414 };
415 window.originalPostMessageFunction = window.postMessage;
416 window.WB_PostMessage_Fixup = function(target, message, targetOrigin, transfer) {
417 target.originalPostMessageFunction.call(target, message, targetOrigin, transfer);
418 }
419 window.WB_PostMessage = function(callingWindow, message, targetOrigin, transfer) {
420 var rewrittenTargetOrigin;
421 if (targetOrigin) {
422 rewrittenTargetOrigin = WB_Get_Domain(WB_RewriteUrl(targetOrigin));
423 }
424 //detect condition of window containing current function not
425 //being the window from which the function was called
426 if (window !== callingWindow) {
427 //make sure to call postMessage from the same window the live site would call from
428 //this may not occur as each window (iframes included) has an overidden WB_PostMessage
429 callingWindow.WB_PostMessage_Fixup(window, message, rewrittenTargetOrigin, transfer);
430 }
431 else {
432 window.originalPostMessageFunction.call(window, message, rewrittenTargetOrigin, transfer);
433 }
434 }
435 document.WB_wombat_self_location = WB_wombat_self_location;
436 //from http://stackoverflow.com/questions/2638292/after-travelling-back-in-firefox-history-javascript-wont-run - for

https://webarchive.jira.com/browse/ARI-4118↪→
437 window.onunload = function(){};
438 WB_Wombat_SetCookies(WB_wombat_self_location._origHref, location.protocol + "//" + origHost, replayPrefix.split("/")[3],

captureDate);↪→
439 //for https://webarchive.jira.com/browse/ARI-4161 - error in Scott Reed's Firefox: NS_ERROR_DOM_QUOTA_REACHED Persistent storage

maximum size reached↪→
440 try {
441 WB_wombat_Override_LocalStorage();
442 }
443 catch (e) {
444 console.log("WB_wombat_Override_LocalStorage error: " + e);
445 }
446 var proxied = window.XMLHttpRequest.prototype.open;
447 window.XMLHttpRequest.prototype.open = function() {
448 //only set withCredentials == true if request is to wayback and ready state is correct for withCredentials
449 //otherwise withCredentials == true will block requests to analytics site.
450 if ((this.readyState == 0 || this.readyState == 1) &&
451 (arguments[1].indexOf(WB_wombat_replayPrefix) == 0 || arguments[1].indexOf("/") == 0)) {
452 this.withCredentials=true;
453 }
454 return proxied.apply(this, [].slice.call(arguments));
455 };
456 }
457 // determine if current page executing javascript is an embedded page or not
458 function WB_Wombat_IsEmbedded() {
459 return window.self !== window.top;
460 }
461 function WB_Wombat_SetCookies(origHref, origHost, collectionId, captureDate) {
462 //only set wayback.initiatingpage cookie for "top-level" pages, otherwise, Wayback QA could mark down missing

202

463 //urls under the wrong containing page since wayback.initiatingpage cookie is used to determine
464 //the containing page
465 if (!WB_Wombat_IsEmbedded()) {
466 document.cookie="wayback.initiatingpage=" + encodeURIComponent(origHref) + "; path=/";
467 }
468 document.cookie="wayback.archivalhost=" + encodeURIComponent(origHost) + "; path=/";
469 document.cookie="wayback.collectionid=" + collectionId + "; path=/";
470 document.cookie="wayback.timestamp=" + captureDate + "; path=/";
471
472 }
473 //copied from http://stackoverflow.com/questions/1833588/javascript-clone-a-function
474 Function.prototype.clone = function() {
475 var cloneObj = this;
476 if(this.__isClone) {
477 cloneObj = this.__clonedFrom;
478 }
479 var temp = function() { return cloneObj.apply(this, arguments); };
480 for(var key in this) {
481 temp[key] = this[key];
482 }
483 temp.__isClone = true;
484 temp.__clonedFrom = cloneObj;
485 return temp;
486 };
487
488 // Check quickly after page load
489 setTimeout(WB_wombat_checkLocations, 100);
490 //setTimeout(WB_wombat_checkLocations, 1000);
491 // Check periodically every few seconds
492 setInterval(WB_wombat_checkLocations, 500);

Fig. 145. http://wayback.archive-it.org/wb-static/js/ait-client-rewrit
e.js

http://wayback.archive-it.org/wb-static/js/ait-client-rewrite.js
http://wayback.archive-it.org/wb-static/js/ait-client-rewrite.js

203

Below is the full response containing the portion of un-rewritten HTML shown in
Figure 83

{

"html": "\n\n<div id=\"comp-pattern-library\" class=\"distinct-component-group container-more-from-this-index\">\n\n<h2 class=\"group-title\"

data-entityid=\"more-from-this-index-headline#middle_east\">\nMiddle East<\/a>\n\n<\/h2>\n<div

class=\"sparrow-container sparrow-columns\">\n<div class=\"sparrow sparrow__3 sparrow__\">\n<div class=\"sparrow-item faux-block-link\"

data-entityid=\"more-section-index#1\">\n<div class=\"sparrow-item__image\">\n<div class=\"responsive-image responsive-image--16by9\">\n\n<div

class=\"js-delayed-image-load\" data-src=\"https:\/\/ichef.bbci.co.uk\/news\/200\/cpsprodpb\/9A32\/production\/_99947493_collage.jpg\" data-width=\"976\"

data-height=\"549\" data-alt=\"Alexanda Kotey, left, and El Shafee Elsheikh\"><\/div>\n<!--[if lt IE 9]>\n<img

src=\"https:\/\/ichef.bbci.co.uk\/news\/200\/cpsprodpb\/9A32\/production\/_99947493_collage.jpg\" class=\"js-image-replace\" alt=\"Alexanda Kotey, left, and El Shafee

Elsheikh\" width=\"976\" height=\"549\" \/>\n<![endif]-->\n\n<\/div>\n<\/div>\n\n<div class=\"sparrow-item__body\">\n<a href=\"\/news\/world-middle-east-42995027\"

class=\"title-link\">\n\n<h3 class=\"title-link__title\">\n\nLast of IS 'Beatles' gang captured in Syria<\/span>\n<\/h3>\n<\/a><div

class=\"sparrow-item__info\">\n\n<ul class=\"mini-info-list\">\n<li class=\"mini-info-list__item\"><div class=\"date date--v2\" data-seconds=\"1518131716\"

data-datetime=\"8 February 2018\">8 February 2018<\/div><\/li>\n<li class=\"mini-info-list__item mini-info-list__item--section\"><span

class=\"mini-info-list__section-desc off-screen\">From the section <\/span><a href=\"\/news\/world\/middle_east\" class=\"mini-info-list__section\"

data-entityid=\"more-from-this-index-section-label\">Middle East<\/a><\/li>\n<\/ul>\n<\/div>\n<\/div>\n\n<a href=\"\/news\/world-middle-east-42995027\"

class=\"faux-block-link__overlay-link\" tabindex=\"-1\" aria-hidden=\"true\">Full article Last of IS 'Beatles' gang captured in Syria<\/a>\n<\/div>\n<div

class=\"sparrow-item faux-block-link\" data-entityid=\"more-section-index#2\">\n<div class=\"sparrow-item__image\">\n<div class=\"responsive-image

responsive-image--16by9\">\n\n<div class=\"js-delayed-image-load\"

data-src=\"https:\/\/ichef.bbci.co.uk\/news\/200\/cpsprodpb\/E31F\/production\/_99934185_mediaitem99934184.jpg\" data-width=\"976\" data-height=\"549\" data-alt=\"SDF

fighters in Syria, file image\"><\/div>\n<!--[if lt IE 9]>\n<img

src=\"https:\/\/ichef.bbci.co.uk\/news\/200\/cpsprodpb\/E31F\/production\/_99934185_mediaitem99934184.jpg\" class=\"js-image-replace\" alt=\"SDF fighters in Syria, file

image\" width=\"976\" height=\"549\" \/>\n<![endif]-->\n\n<\/div>\n<\/div>\n\n<div class=\"sparrow-item__body\">\n<a href=\"\/news\/world-middle-east-42994235\"

class=\"title-link\">\n\n<h3 class=\"title-link__title\">\n\nSyria condemns US air strike as massacre<\/span>\n<\/h3>\n<\/a> <div

class=\"sparrow-item__info\">\n\n<ul class=\"mini-info-list\">\n<li class=\"mini-info-list__item\"><div class=\"date date--v2\" data-seconds=\"1518119623\"

data-datetime=\"8 February 2018\">8 February 2018<\/div><\/li>\n<li class=\"mini-info-list__item mini-info-list__item--section\"><span

class=\"mini-info-list__section-desc off-screen\">From the section <\/span><a href=\"\/news\/world\/middle_east\" class=\"mini-info-list__section\"

data-entityid=\"more-from-this-index-section-label\">Middle East<\/a><\/li>\n<\/ul>\n<\/div>\n<\/div>\n\n<a href=\"\/news\/world-middle-east-42994235\"

class=\"faux-block-link__overlay-link\" tabindex=\"-1\" aria-hidden=\"true\">Full article Syria condemns US air strike as massacre<\/a>\n<\/div>\n<div

class=\"sparrow-item faux-block-link\" data-entityid=\"more-section-index#3\">\n<div class=\"sparrow-item__image\">\n<div class=\"responsive-image

responsive-image--16by9\">\n\n<div class=\"js-delayed-image-load\"

data-src=\"https:\/\/ichef-1.bbci.co.uk\/news\/200\/cpsprodpb\/13F64\/production\/_99946718_mediaitem99946717.jpg\" data-width=\"2048\" data-height=\"1152\" data-alt=\"A

wounded man is helped from the scene of a reported government air strikes on the town of Arbin, in the besieged rebel-held Eastern Ghouta (8 February

2018)\"><\/div>\n<!--[if lt IE 9]>\n<img src=\"https:\/\/ichef-1.bbci.co.uk\/news\/200\/cpsprodpb\/13F64\/production\/_99946718_mediaitem99946717.jpg\"

class=\"js-image-replace\" alt=\"A wounded man is helped from the scene of a reported government air strikes on the town of Arbin, in the besieged rebel-held Eastern

Ghouta (8 February 2018)\" width=\"2048\" height=\"1152\" \/>\n<![endif]-->\n\n<\/div>\n<\/div>\n\n<div class=\"sparrow-item__body\">\n\n\n<h3 class=\"title-link__title\">\n\nAssault on Syria enclave

leaves 200 dead<\/span>\n<\/h3>\n\/a><div class=\"sparrow-item__info\">\n\n<ul class=\"mini-info-list\">\n<li class=\"mini-info-list__item\"><div class=\"date date--v2\"

data-seconds=\"1518120008\" data-datetime=\"8 February 2018\">8 February 2018<\/div><\/li>\n<li class=\"mini-info-list__item mini-info-list__item--section\"><span

class=\"mini-info-list__section-desc off-screen\">From the section <\/span><a href=\"\/news\/world\/middle_east\" class=\"mini-info-list__section\"

data-entityid=\"more-from-this-index-section-label\">Middle East<\/a><\/li>\n<\/ul>\n<\/div>\n<\/div>\n\n<a href=\"\/news\/world-middle-east-42996453\"

class=\"faux-block-link__overlay-link\" tabindex=\"-1\" aria-hidden=\"true\">Full article Assault on Syria enclave leaves 200

dead<\/a>\n<\/div>\n<\/div>\n<\/div>\n\n\n<\/div>\n\n",

"jsDependencies": {

"0": "module\/components\/commentCountAdapter",

"1": "module\/components\/fauxBlockLink",

"2": "module\/components\/responsiveImage",

"3": "module\/components\/timestampAdaptor"

}

}

Fig. 146. Full Response containing the portion of un-rewritten HTML shown in
Figure 83

204

VITA

John Andrew Berlin
Department of Computer Science
Old Dominion University
Norfolk, VA 23529

EDUCATION
M.S. Computer Science, Old Dominion University, 2018
B.S. Computer Science, Old Dominion University, 2015

EMPLOYMENT
2016 - Research Assistant, Web Science and Digital Libraries Research Group
2015 - 2015 Software Development Intern, Newport News Shipbuilding
2014 - 2014 Software Development Intern, Newport News Shipbuilding
2013 - 2014 IT Consultant, Capital Consultants Inc

PUBLICATIONS AND PRESENTATIONS
2018 ArchiveNow: Simplified, Extensible, Multi-Archive Preservation
2017 WAIL: Collection-Based Personal Web Archiving
A complete list is available at http://www.cs.odu.edu/∼jberlin

AFFILIATIONS
Association for Computing Machinery
Core Contributor Pywb

CONTACT
Email jberlin@cs.odu.edu n0tan3rd@gmail.com
Homepage http://www.cs.odu.edu/∼jberlin/

Typeset using LATEX.

http://www.cs.odu.edu/~jberlin
mailto:jberlin@cs.odu.edu
mailto:n0tan3rd@gmail.com
http://www.cs.odu.edu/~jberlin/

	List of Tables
	List of Figures
	Introduction
	Contributions
	Thesis Organization

	Background
	Hyper Text Transport Protocol (HTTP)
	Hyper Text Markup Language
	JavaScript (JS)
	Browsers And Viewing A Webpage
	Memento Framework
	Archiving And Replay Of Web Pages
	URL Rewriting
	Summary

	Related Work
	Archiving Dynamic Content
	Handling The Replay Of Dynamic Content
	Security And The Archive
	Summary

	Styles Of Replaying Archived Web Pages
	Archival Linkage Modifications
	Replay Preserving Modifications
	Sandboxed Replay
	Non-Sandboxing Replay
	Essence Preservation
	Summary

	JavaScript for the preservation and replay of the modern web
	Web IDL
	Web IDL JavaScript mapping
	Auto-Generating A Client-Side Rewriter
	Evaluation
	Wayback Machine Banner Vulnerability
	Summary

	Contributions, Future Work, And Conclusions
	Contributions
	Future Work
	Conclusions
	REFERENCES
	JavaScript for the preservation and replay of the modern web

	VITA

